938 resultados para electricity distribution network
Resumo:
Energy Resources Management can play a very relevant role in future power systems in SmartGrid context, with high penetration of distributed generation and storage systems. This paper deals with the importance of resources management in incident situation. The system to consider a high penetration of distributed generation, demand response, storage units and network reconfiguration. A case study evidences the advantages of using a flexible SCADA to control the energy resources in incident situation.
Resumo:
Demand response can play a very relevant role in future power systems in which distributed generation can help to assure service continuity in some fault situations. This paper deals with the demand response concept and discusses its use in the context of competitive electricity markets and intensive use of distributed generation. The paper presents DemSi, a demand response simulator that allows studying demand response actions and schemes using a realistic network simulation based on PSCAD. Demand response opportunities are used in an optimized way considering flexible contracts between consumers and suppliers. A case study evidences the advantages of using flexible contracts and optimizing the available generation when there is a lack of supply.
Resumo:
An auction model is used to increase the individual profits for market players with products they do not use. A Financial Transmission Rights Auction has the goal of trade transmission rights between Bidders and helps them raise their own profits. The ISO plays a major rule on keep the system in technical limits without interfere on the auctions offers. In some auction models the ISO decide want bids are implemented on the network, always with the objective maximize the individual profits for all bidders in the auction. This paper proposes a methodology for a Financial Transmission Rights Auction and an informatics application. The application receives offers from the purchase and sale side and considers bilateral contracts as Base Case. This goal is maximize the individual profits within the system in their technical limits. The paper includes a case study for the 30 bus IEEE test case.
Resumo:
Adequate decision support tools are required by electricity market players operating in a liberalized environment, allowing them to consider all the business opportunities and take strategic decisions. Ancillary services (AS) represent a good negotiation opportunity that must be considered by market players. Based on the ancillary services forecasting, market participants can use strategic bidding for day-ahead ancillary services markets. For this reason, ancillary services market simulation is being included in MASCEM, a multi-agent based electricity market simulator that can be used by market players to test and enhance their bidding strategies. The paper presents the methodology used to undertake ancillary services forecasting, based on an Artificial Neural Network (ANN) approach. ANNs are used to day-ahead prediction of non-spinning reserve (NS), regulation-up (RU), and regulation down (RD). Spinning reserve (SR) is mentioned as past work for comparative analysis. A case study based on California ISO (CAISO) data is included; the forecasted results are presented and compared with CAISO published forecast.
Resumo:
This paper presents an integrated system that helps both retail companies and electricity consumers on the definition of the best retail contracts and tariffs. This integrated system is composed by a Decision Support System (DSS) based on a Consumer Characterization Framework (CCF). The CCF is based on data mining techniques, applied to obtain useful knowledge about electricity consumers from large amounts of consumption data. This knowledge is acquired following an innovative and systematic approach able to identify different consumers’ classes, represented by a load profile, and its characterization using decision trees. The framework generates inputs to use in the knowledge base and in the database of the DSS. The rule sets derived from the decision trees are integrated in the knowledge base of the DSS. The load profiles together with the information about contracts and electricity prices form the database of the DSS. This DSS is able to perform the classification of different consumers, present its load profile and test different electricity tariffs and contracts. The final outputs of the DSS are a comparative economic analysis between different contracts and advice about the most economic contract to each consumer class. The presentation of the DSS is completed with an application example using a real data base of consumers from the Portuguese distribution company.
Resumo:
A existência do regime de neutro em subestações de distribuição de energia elétrica é essencial para o bom funcionamento de toda a rede. Existe um vasto leque de opções no que diz respeito aos regimes de neutro. Cada opção tem as suas vantagens e desvantagens, e cabe às empresas do setor elétrico a escolha do regime de neutro mais adequado em função das caraterísticas da rede. A escolha do regime de neutro tem influência direta no desempenho global de toda a rede de média tensão. O principal objetivo desta dissertação é o estudo e a análise das vantagens e inconvenientes dos vários regimes de neutro: neutro isolado, neutro impedante, ligado diretamente à terra, neutro ressonante, analisando as suas vantagens e inconvenientes. É feito um estudo aprofundado do regime de neutro ressonante, também designado por regime de neutro com a Bobine de Petersen. Este trabalho descreve, ainda, de forma sucinta a situação de Portugal relativamente aos regimes de neutro que utiliza e a sua perspetiva futura. Por fim é apresentado um caso de estudo, que diz respeito a uma rede de média tensão (30 kV) alimentada pela subestação de Serpa. Foram estudados os regimes de neutro como a bobine de Petersen, reatância de neutro e neutro isolado. Foi também estudada a influência na ocorrência de um defeito fase-terra e a influência na ocorrência de defeitos francos e resistivos em vários pontos da rede.
Resumo:
This technical report describes the PDFs which have been implemented to model the behaviours of certain parameters of the Repeater-Based Hybrid Wired/Wireless PROFIBUS Network Simulator (RHW2PNetSim) and Bridge-Based Hybrid Wired/Wireless PROFIBUS Network Simulator (BHW2PNetSim).
Resumo:
It is important to understand and forecast a typical or a particularly household daily consumption in order to design and size suitable renewable energy systems and energy storage. In this research for Short Term Load Forecasting (STLF) it has been used Artificial Neural Networks (ANN) and, despite the consumption unpredictability, it has been shown the possibility to forecast the electricity consumption of a household with certainty. The ANNs are recognized to be a potential methodology for modeling hourly and daily energy consumption and load forecasting. Input variables such as apartment area, numbers of occupants, electrical appliance consumption and Boolean inputs as hourly meter system were considered. Furthermore, the investigation carried out aims to define an ANN architecture and a training algorithm in order to achieve a robust model to be used in forecasting energy consumption in a typical household. It was observed that a feed-forward ANN and the Levenberg-Marquardt algorithm provided a good performance. For this research it was used a database with consumption records, logged in 93 real households, in Lisbon, Portugal, between February 2000 and July 2001, including both weekdays and weekend. The results show that the ANN approach provides a reliable model for forecasting household electric energy consumption and load profile. © 2014 The Author.
Resumo:
Dissertação apresentada para a obtenção do Grau de Doutor em Química, especialidade em Química-Física, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
In this paper, a novel hybrid approach is proposed for electricity prices forecasting in a competitive market, considering a time horizon of 1 week. The proposed approach is based on the combination of particle swarm optimization and adaptive-network based fuzzy inference system. Results from a case study based on the electricity market of mainland Spain are presented. A thorough comparison is carried out, taking into account the results of previous publications, to demonstrate its effectiveness regarding forecasting accuracy and computation time. Finally, conclusions are duly drawn.
Resumo:
Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies
Resumo:
Dissertação apresentada para obtenção do Grau de Mestre em Informática, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
Trabalho Final de Mestrado para a obtenção do grau de Mestre em Engenharia Mecânica /Energia
Resumo:
The increasing importance of the integration of distributed generation and demand response in the power systems operation and planning, namely at lower voltage levels of distribution networks and in the competitive environment of electricity markets, leads us to the concept of smart grids. In both traditional and smart grid operation, non-technical losses are a great economic concern, which can be addressed. In this context, the ELECON project addresses the use of demand response contributions to the identification of non-technical losses. The present paper proposes a methodology to be used by Virtual Power Players (VPPs), which are entities able to aggregate distributed small-size resources, aiming to define the best electricity tariffs for several, clusters of consumers. A case study based on real consumption data demonstrates the application of the proposed methodology.
Resumo:
This paper presents the applicability of a reinforcement learning algorithm based on the application of the Bayesian theorem of probability. The proposed reinforcement learning algorithm is an advantageous and indispensable tool for ALBidS (Adaptive Learning strategic Bidding System), a multi-agent system that has the purpose of providing decision support to electricity market negotiating players. ALBidS uses a set of different strategies for providing decision support to market players. These strategies are used accordingly to their probability of success for each different context. The approach proposed in this paper uses a Bayesian network for deciding the most probably successful action at each time, depending on past events. The performance of the proposed methodology is tested using electricity market simulations in MASCEM (Multi-Agent Simulator of Competitive Electricity Markets). MASCEM provides the means for simulating a real electricity market environment, based on real data from real electricity market operators.