856 resultados para ecological theory of ageing
Resumo:
Climatic oscillations as reflected in atmospheric modes such as the North Atlantic Oscillation (NAO) may be seen as a proxy for regulating forces in aquatic and terrestrial ecosystems. Our review highlights the variety of climate processes related to the NAO and the diversity in the type of ecological responses that different biological groups can display. Available evidence suggests that the NAO influences ecological dynamics in both marine and terrestrial systems, and its effects may be seen in variation at the individual, population and community levels. The ecological responses to the NAO encompass changes in timing of reproduction, population dynamics, abundance, spatial distribution and interspecific relationships such as competition and predator-prey relationships. This indicates that local responses to large-scale changes may be more subtle than previously suggested. We propose that the NAO effects may be classified as three types: direct, indirect and integrated. Such a classification will help the design and interpretation of analyses attempting to relate ecological changes to the NAO and, possibly, to climate in general.
Resumo:
The problems of relating the results of experiments in the laboratory to events in nature are twofold: to equate the response to a single variable (hydrocarbons) with the natural variability in the biological material in a multivariate environment, and to consider whether the response established experimentally has any relevance to the animal's chances of survival and reproduction (i.e. its fitness) in the natural population. Recent studies of the effects of petroleum hydrocarbons on marine invertebrates are reviewed, with an emphasis on the physiological and cytochemical responses by bivalve molluscs. The dose-response relations that emerge suggest the intensity of the 'signal' that must be detected in nature if the chronic, sublethal effects of petroleum pollution are to be measured. The natural variability in these physiological and cytochemical processes are then reviewed and the main causes of variability in natural populations, both endogenous and exogenous, discussed. These results indicate the extent of the `noise' above which the signal from possible pollution effects must be detected. The results from recent field studies on the common mussel, Mytilus edulis, are discussed. The results are as complex as expected, but it proves possible to reduce the variance in the measured responses so that pollution effects, including those due to hydrocarbons, can be detected. The ecological consequences of the observed effects of petroleum hydrocarbons are then discussed in terms of reproductive effort and reproductive value. Considerable variation between populations exists here also and this can be used to help in the interpretation of the extent of the impact of the environment on the ecology of the population. The result is to place the findings of the laboratory experiments in an ecological context of natural variability and of the physiological costs of adaptation.
Resumo:
Hutchinson's (1957; Cold Spring Harbour Symp Quant Biol 22:415-427) niche concept is being used increasingly in the context of global change, and is currently applied to many ecological issues including climate change, exotic species invasion and management of endangered species. For both the marine and terrestrial realms, there is a growing need to assess the breadth of the niches of individual species and to make comparisons among them to forecast the species' capabilities to adapt to global change. In this paper, we describe simple non-parametric multivariate procedures derived from a method originally used in climatology to (1) evaluate the breadth of the ecological niche of a species and (2) examine whether the niches are significantly separated. We first applied the statistical procedures to a simple fictive example of 3 species separated by 2 environmental factors in order to describe the technique. We then used it to quantify and compare the ecological niche of 2 key-structural marine zooplankton copepod species, Calanus finmarchicus and C. helgolandicus, in the northern part of the North Atlantic Ocean using 3 environmental factors. The test demonstrates that the niches of both species are significantly separated and that the coldwater species has a niche larger than that of its warmer-water congeneric species.
Resumo:
This paper reviews the utility and availability of biological and ecological traits for marine species so as to prioritise the development of a world database on marine species traits. In addition, the ‘status’ of species for conservation, that is, whether they are introduced or invasive, of fishery or aquaculture interest, harmful, or used as an ecological indicator, were reviewed because these attributes are of particular interest to society. Whereas traits are an enduring characteristic of a species and/or population, a species status may vary geographically and over time. Criteria for selecting traits were that they could be applied to most taxa, were easily available, and their inclusion would result in new research and/or management applications. Numerical traits were favoured over categorical. Habitat was excluded as it can be derived from a selection of these traits. Ten traits were prioritized for inclusion in the most comprehensive open access database on marine species (World Register of Marine Species), namely taxonomic classification, environment, geography, depth, substratum, mobility, skeleton, diet, body size and reproduction. These traits and statuses are being added to the database and new use cases may further subdivide and expand upon them.
Resumo:
The purpose of this study is to produce a series of Conceptual Ecological Models (CEMs) that represent sublittoral rock habitats in the UK. CEMs are diagrammatic representations of the influences and processes that occur within an ecosystem. They can be used to identify critical aspects of an ecosystem that may be studied further, or serve as the basis for the selection of indicators for environmental monitoring purposes. The models produced by this project are control diagrams, representing the unimpacted state of the environment free from anthropogenic pressures. It is intended that the models produced by this project will be used to guide indicator selection for the monitoring of this habitat in UK waters. CEMs may eventually be produced for a range of habitat types defined under the UK Marine Biodiversity Monitoring R&D Programme (UKMBMP), which, along with stressor models, are designed to show the interactions within impacted habitats, would form the basis of a robust method for indicator selection. This project builds on the work to develop CEMs for shallow sublittoral coarse sediment habitats (Alexander et al 2014). The project scope included those habitats defined as ‘sublittoral rock’. This definition includes those habitats that fall into the EUNIS Level 3 classifications A3.1 Atlantic and Mediterranean high energy infralittoral rock, A3.2 Atlantic and Mediterranean moderate energy infralittoral rock, A3.3 Atlantic and Mediterranean low energy infralittoral rock, A4.1 Atlantic and Mediterranean high energy circalittoral rock, A4.2 Atlantic and Mediterranean moderate energy circalittoral rock, and A4.3 Atlantic and Mediterranean low energy circalittoral rock as well as the constituent Level 4 and 5 biotopes that are relevant to UK waters. A species list of characterising fauna to be included within the scope of the models was identified using an iterative process to refine the full list of species found within the relevant Level 5 biotopes. A literature review was conducted using a pragmatic and iterative approach to gather evidence regarding species traits and information that would be used to inform the models and characterise the interactions that occur within the sublittoral rock habitat. All information gathered during the literature review was entered into a data logging pro-forma spreadsheet that accompanies this report. Wherever possible, attempts were made to collect information from UK-specific peer-reviewed studies, although other sources were used where necessary. All data gathered was subject to a detailed confidence assessment. Expert judgement by the project team was utilised to provide information for aspects of the models for which references could not be sourced within the project timeframe. A multivariate analysis approach was adopted to assess ecologically similar groups (based on ecological and life history traits) of fauna from the identified species to form the basis of the models. A model hierarchy was developed based on these ecological groups. One general control model was produced that indicated the high-level drivers, inputs, biological assemblages, ecosystem processes and outputs that occur in sublittoral rock habitats. In addition to this, seven detailed sub-models were produced, which each focussed on a particular ecological group of fauna within the habitat: ‘macroalgae’, ‘temporarily or permanently attached active filter feeders’, ‘temporarily or permanently attached passive filter feeders’, ‘bivalves, brachiopods and other encrusting filter feeders’, ‘tube building fauna’, ‘scavengers and predatory fauna’, and ‘non-predatory mobile fauna’. Each sub-model is accompanied by an associated confidence model that presents confidence in the links between each model component. The models are split into seven levels and take spatial and temporal scale into account through their design, as well as magnitude and direction of influence. The seven levels include regional to global drivers, water column processes, local inputs/processes at the seabed, habitat and biological assemblage, output processes, local ecosystem functions, and regional to global ecosystem functions. The models indicate that whilst the high level drivers that affect each ecological group are largely similar, the output processes performed by the biota and the resulting ecosystem functions vary both in number and importance between groups. Confidence within the models as a whole is generally high, reflecting the level of information gathered during the literature review. Physical drivers which influence the ecosystem were found to be of high importance for the sublittoral rock habitat, with factors such as wave exposure, water depth and water currents noted to be crucial in defining the biological assemblages. Other important factors such as recruitment/propagule supply, and those which affect primary production, such as suspended sediments, light attenuation and water chemistry and temperature, were also noted to be key and act to influence the food sources consumed by the biological assemblages of the habitat, and the biological assemblages themselves. Output processes performed by the biological assemblages are variable between ecological groups depending on the specific flora and fauna present and the role they perform within the ecosystem. Of particular importance are the outputs performed by the macroalgae group, which are diverse in nature and exert influence over other ecological groups in the habitat. Important output processes from the habitat as a whole include primary and secondary production, bioengineering, biodeposition (in mixed sediment habitats) and the supply of propagules; these in turn influence ecosystem functions at the local scale such as nutrient and biogeochemical cycling, supply of food resources, sediment stability (in mixed sediment habitats), habitat provision and population and algae control. The export of biodiversity and organic matter, biodiversity enhancement and biotope stability are the resulting ecosystem functions that occur at the regional to global scale. Features within the models that are most useful for monitoring habitat status and change due to natural variation have been identified, as have those that may be useful for monitoring to identify anthropogenic causes of change within the ecosystem. Biological, physical and chemical features of the ecosystem have been identified as potential indicators to monitor natural variation, whereas biological factors and those physical /chemical factors most likely to affect primary production have predominantly been identified as most likely to indicate change due to anthropogenic pressures.
Resumo:
1.There are tens of thousands of species of phytoplankton found throughout the tree of life. Despite this diversity, phytoplankton are often aggregated into a few functional groups according to metabolic traits or biogeochemical role. We investigate the extent to which phytoplankton species dynamics are neutral within functional groups. 2.Seasonal dynamics in many regions of the ocean are known to affect phytoplankton at the functional group level leading to largely predictable patterns of seasonal succession. It is much more difficult to make general statements about the dynamics of individual species. 3.We use a 7 year time-series at station L4 in the Western English Channel with 57 diatom and 17 dinoflagellate species enumerated weekly to test if the abundance of diatom and dinoflagellate species vary randomly within their functional group envelope or if each species is driven uniquely by external factors. 4.We show that the total biomass of the diatom and dinoflagellate functional groups is well predicted by irradiance and temperature and quantify trait values governing the growth rate of both functional groups. The biomass dynamics of the functional groups are not neutral and each has their own distinct responses to environmental forcing. Compared to dinoflagellates, diatoms have faster growth rates, and grow faster under lower irradiance, cooler temperatures, and higher nutrient conditions. 5.The biomass of most species vary randomly within their functional group biomass envelope, most of the time. As a consequence, modelers will find it difficult to predict the biomass of most individual species. Our analysis supports the approach of using a single set of traits for a functional group and suggests that it should be possible to determine these traits from natural communities.