967 resultados para driving while impaired
Resumo:
Recent road safety statistics show that the decades-long fatalities decreasing trend is stopping and stagnating. Statistics further show that crashes are mostly driven by human error, compared to other factors such as environmental conditions and mechanical defects. Within human error, the dominant error source is perceptive errors, which represent about 50% of the total. The next two sources are interpretation and evaluation, which accounts together with perception for more than 75% of human error related crashes. Those statistics show that allowing drivers to perceive and understand their environment better, or supplement them when they are clearly at fault, is a solution to a good assessment of road risk, and, as a consequence, further decreasing fatalities. To answer this problem, currently deployed driving assistance systems combine more and more information from diverse sources (sensors) to enhance the driver's perception of their environment. However, because of inherent limitations in range and field of view, these systems' perception of their environment remains largely limited to a small interest zone around a single vehicle. Such limitations can be overcomed by increasing the interest zone through a cooperative process. Cooperative Systems (CS), a specific subset of Intelligent Transportation Systems (ITS), aim at compensating for local systems' limitations by associating embedded information technology and intervehicular communication technology (IVC). With CS, information sources are not limited to a single vehicle anymore. From this distribution arises the concept of extended or augmented perception. Augmented perception allows extending an actor's perceptive horizon beyond its "natural" limits not only by fusing information from multiple in-vehicle sensors but also information obtained from remote sensors. The end result of an augmented perception and data fusion chain is known as an augmented map. It is a repository where any relevant information about objects in the environment, and the environment itself, can be stored in a layered architecture. This thesis aims at demonstrating that augmented perception has better performance than noncooperative approaches, and that it can be used to successfully identify road risk. We found it was necessary to evaluate the performance of augmented perception, in order to obtain a better knowledge on their limitations. Indeed, while many promising results have already been obtained, the feasibility of building an augmented map from exchanged local perception information and, then, using this information beneficially for road users, has not been thoroughly assessed yet. The limitations of augmented perception, and underlying technologies, have not be thoroughly assessed yet. Most notably, many questions remain unanswered as to the IVC performance and their ability to deliver appropriate quality of service to support life-saving critical systems. This is especially true as the road environment is a complex, highly variable setting where many sources of imperfections and errors exist, not only limited to IVC. We provide at first a discussion on these limitations and a performance model built to incorporate them, created from empirical data collected on test tracks. Our results are more pessimistic than existing literature, suggesting IVC limitations have been underestimated. Then, we develop a new CS-applications simulation architecture. This architecture is used to obtain new results on the safety benefits of a cooperative safety application (EEBL), and then to support further study on augmented perception. At first, we confirm earlier results in terms of crashes numbers decrease, but raise doubts on benefits in terms of crashes' severity. In the next step, we implement an augmented perception architecture tasked with creating an augmented map. Our approach is aimed at providing a generalist architecture that can use many different types of sensors to create the map, and which is not limited to any specific application. The data association problem is tackled with an MHT approach based on the Belief Theory. Then, augmented and single-vehicle perceptions are compared in a reference driving scenario for risk assessment,taking into account the IVC limitations obtained earlier; we show their impact on the augmented map's performance. Our results show that augmented perception performs better than non-cooperative approaches, allowing to almost tripling the advance warning time before a crash. IVC limitations appear to have no significant effect on the previous performance, although this might be valid only for our specific scenario. Eventually, we propose a new approach using augmented perception to identify road risk through a surrogate: near-miss events. A CS-based approach is designed and validated to detect near-miss events, and then compared to a non-cooperative approach based on vehicles equiped with local sensors only. The cooperative approach shows a significant improvement in the number of events that can be detected, especially at the higher rates of system's deployment.
Resumo:
Driver behaviour at rail level crossings represents a key area for further research. This paper describes an on-road study comparing novice and experienced driver situation awareness at rural rail level crossings. Participants provided verbal protocols while driving a pre-determined rural route incorporating ten rail level crossings. Driver situation awareness was assessed using a network analysis approach. The analysis revealed key differences between novice and experienced drivers' situation awareness. In particular, the novice drivers seemed to be more reliant on rail level crossing warnings and their situation awareness was less focussed on the environment outside of the rail level crossing. In closing, the implications for rail level crossing safety are discussed.
Resumo:
Introduction: Within the context of road safety it is important that workload (the portion of a driver’s resources expended to perform a task) remains at a manageable level, preventing overloading and consequently performance decrements. Motorcyclists are over represented in crash statistics where the vehicle operator has a positive, low blood alcohol concentration (BAC) (e.g., 0.05%). The NASA task load index (NASA-TLX) comprises sub-scales that purportedly assess different aspects of subjective workload. It was hypothesized that, compared to a zero BAC condition, low BACs would be associated with increases in workload ratings, and decrements in riding performance. Method: Forty participants (20 novice, 20 experienced) completed simulated motorcycle rides in urban and rural scenarios under low dose BAC conditions (0.00%, 0.02%, 0.05% BAC), while completing a safety relevant peripheral detection task (PDT). Six sub-scales of the NASA-TLX were completed after each ride. Riding performance was assessed using standard deviation of lateral position (SDLP). Hazard perception was assessed by response time to the PDT. Results: Riding performance and hazard perception were affected by alcohol. There was a significant increase in SDLP in the urban scenario and of PDT reaction time in the rural scenario under 0.05% BAC compared to 0.00% BAC. Overall NASA-TLX score increased at 0.02% and 0.05% BAC in the urban environment only, with a trend for novices to rate workload higher than experienced riders. There was a significant main effect of sub-scale on workload ratings in both the urban and rural scenarios. Discussion: 0.05% BAC was associated with decrements in riding performance in the urban environment, decrements in hazard perception in the rural environment, and increases in overall ratings of subjective workload in the urban environment. The workload sub-scales of the NASA-TLX appear to be measuring distinct aspects of motorcycle riding-related workload. Issues of workload and alcohol impaired riding performance are discussed.
Resumo:
Following eco-driving instructions can reduce fuel consumption between 5 to 20% on urban roads with manual cars. The majority of Australian cars have an automatic transmission gear-box. It is therefore of interest to verify whether current eco-driving instructions are e cient for such vehicles. In this pilot study, participants (N=13) drove an instrumented vehicle (Toyota Camry 2007) with an automatic transmission. Fuel consumption of the participants was compared before and after they received simple eco-driving instructions. Participants drove the same vehicle on the same urban route under similar tra c conditions. We found that participants drove at similar speeds during their baseline and eco-friendly drives, and reduced the level of their accelerations and decelerations during eco-driving. Fuel consumption decreased for the complete drive by 7%, but not on the motorway and inclined sections of the study. Gas emissions were estimated with the VT-micro model, and emissions of the studied pollutants (CO2, CO, NOX and HC) were reduced, but no di erence was observed for CO2 on the motorway and inclined sections. The di erence for the complete lap is 3% for CO2. We have found evidence showing that simple eco-driving instructions are e cient in the case of automatic transmission in an urban environment, but towards the lowest values of the spectrum of fuel consumption reduction from the di erent eco-driving studies.
Resumo:
Distraction resulting from mobile phone use whilst driving has been shown to increase the reaction times of drivers, thereby increasing the likelihood of a crash. This study compares the effects of mobile phone conversations on reaction times of drivers responding to traffic events that occur at different points in a driver’s field of view. The CARRS-Q Advanced Driving Simulator was used to test a group of young drivers on various simulated driving tasks including a traffic event that occurred within the driver’s central vision—a lead vehicle braking suddenly—and an event that occurred within the driver’s peripheral—a pedestrian entering a zebra crossing from a footpath. Thirty-two licensed drivers drove the simulator in three phone conditions: baseline (no phone conversation), and while engaged in hands-free and handheld phone conversations. The drivers were aged between 21 to 26 years and split evenly by gender. Differences in reaction times for an event in a driver’s central vision were not statistically significant across phone conditions, probably due to a lower speed selection by the distracted drivers. In contrast, the reaction times to detect an event that originated in a distracted driver’s peripheral vision were more than 50% longer compared to the baseline condition. A further statistical analysis revealed that deterioration of reaction times to an event in the peripheral vision was greatest for distracted drivers holding a provisional licence. Many critical events originate in a driver’s periphery, including vehicles, bicyclists, and pedestrians emerging from side streets. A reduction in the ability to detect these events while distracted presents a significant safety concern that must be addressed.
Resumo:
The use of mobile phones while driving is more prevalent among young drivers—a less experienced cohort with elevated crash risk. The objective of this study was to examine and better understand the reaction times of young drivers to a traffic event originating in their peripheral vision whilst engaged in a mobile phone conversation. The CARRS-Q Advanced Driving Simulator was used to test a sample of young drivers on various simulated driving tasks, including an event that originated within the driver’s peripheral vision, whereby a pedestrian enters a zebra crossing from a sidewalk. Thirty-two licensed drivers drove the simulator in three phone conditions: baseline (no phone conversation), hands-free and handheld. In addition to driving the simulator each participant completed questionnaires related to driver demographics, driving history, usage of mobile phones while driving, and general mobile phone usage history. The participants were 21 to 26 years old and split evenly by gender. Drivers’ reaction times to a pedestrian in the zebra crossing were modelled using a parametric accelerated failure time (AFT) duration model with a Weibull distribution. Also tested where two different model specifications to account for the structured heterogeneity arising from the repeated measures experimental design. The Weibull AFT model with gamma heterogeneity was found to be the best fitting model and identified four significant variables influencing the reaction times, including phone condition, driver’s age, license type (Provisional license holder or not), and self-reported frequency of usage of handheld phones while driving. The reaction times of drivers were more than 40% longer in the distracted condition compared to baseline (not distracted). Moreover, the impairment of reaction times due to mobile phone conversations was almost double for provisional compared to open license holders. A reduction in the ability to detect traffic events in the periphery whilst distracted presents a significant and measurable safety concern that will undoubtedly persist unless mitigated.
Resumo:
Two independent but inter-related conditions that have a growing impact on healthy life expectancy and health care costs in developed nations are an age-related loss of muscle mass (i.e., sarcopenia) and obesity. Sarcopenia is commonly exacerbated in overweight and obese individuals. Progression towards obesity promotes an increase in fat mass and a concomitant decrease in muscle mass, producing an unfavourable ratio of fat to muscle. The coexistence of diminished muscle mass and increased fat mass (so-called 'sarcobesity') is ultimately manifested by impaired mobility and/or development of life-style-related diseases. Accordingly, the critical health issue for a large proportion of adults in developed nations is how to lose fat mass while preserving muscle mass. Lifestyle interventions to prevent or treat sarcobesity include energy-restricted diets and exercise. The optimal energy deficit to reduce body mass is controversial. While energy restriction in isolation is an effective short-term strategy for rapid and substantial weight loss, it results in a reduction of both fat and muscle mass and therefore ultimately predisposes one to an unfavourable body composition. Aerobic exercise promotes beneficial changes in whole-body metabolism and reduces fat mass, while resistance exercise preserves lean (muscle) mass. Current evidence strongly supports the inclusion of resistance and aerobic exercise to complement mild energy-restricted high-protein diets for healthy weight loss as a primary intervention for sarcobesity.
Resumo:
In this paper we explore the relationship between monthly random breath testing (RBT) rates (per 1000 licensed drivers) and alcohol-related traffic crash (ARTC) rates over time, across two Australian states: Queensland and Western Australia. We analyse the RBT, ARTC and licensed driver rates across 12 years; however, due to administrative restrictions, we model ARTC rates against RBT rates for the period July 2004 to June 2009. The Queensland data reveals that the monthly ARTC rate is almost flat over the five year period. Based on the results of the analysis, an average of 5.5 ARTCs per 100,000 licensed drivers are observed across the study period. For the same period, the monthly rate of RBTs per 1000 licensed drivers is observed to be decreasing across the study with the results of the analysis revealing no significant variations in the data. The comparison between Western Australia and Queensland shows that Queensland's ARTC monthly percent change (MPC) is 0.014 compared to the MPC of 0.47 for Western Australia. While Queensland maintains a relatively flat ARTC rate, the ARTC rate in Western Australia is increasing. Our analysis reveals an inverse relationship between ARTC RBT rates, that for every 10% increase in the percentage of RBTs to licensed driver there is a 0.15 decrease in the rate of ARTCs per 100,000 licenced drivers. Moreover, in Western Australia, if the 2011 ratio of 1:2 (RBTs to annual number of licensed drivers) were to double to a ratio of 1:1, we estimate the number of monthly ARTCs would reduce by approximately 15. Based on these findings we believe that as the number of RBTs conducted increases the number of drivers willing to risk being detected for drinking driving decreases, because the perceived risk of being detected is considered greater. This is turn results in the number of ARTCs diminishing. The results of this study provide an important evidence base for policy decisions for RBT operations.
Promoting a more positive traffic safety culture in Australia : lessons learnt and future directions
Resumo:
Adopting a traffic safety culture approach, this paper identifies and discusses the ongoing challenge of promoting the road safety message in Australia. It is widely acknowledged that mass media and public education initiatives have played a critical role in the significant positive changes witnessed in community attitudes to road safety in the last three to four decades. It could be argued that mass media and education have had a direct influence on behaviours and attitudes, as well as an indirect influence through signposting and awareness raising functions in conjunction with enforcement. Great achievements have been made in reducing fatalities on Australia’s roads; a concept which is well understood among the international road safety fraternity. How well these achievements are appreciated by the general Australian community however, is not clear. This paper explores the lessons that can be learnt from successes in attitudinal and behaviour change in regard to seatbelt use and drink driving in Australia. It also identifies and discusses key challenges associated with achieving further positive changes in community attitudes and behaviours, particularly in relation to behaviours that may not be perceived by the community as dangerous, such as speeding and mobile phone use while driving. Potential strategies for future mass media and public education campaigns to target these challenges are suggested, including ways of harnessing the power of contemporary traffic law enforcement techniques, such as point-to-point speed enforcement and in-vehicle technologies, to help spread the road safety message.
Resumo:
One strategy that can be used by older drivers to guard against age-related declines in driving capability is to regulate their driving. This strategy presumes that self-judgments of driving capability are realistic. We found no significant relationships between older drivers’ hazard perception skill ratings and performance on an objective and validated video-based hazard perception test, even when self-ratings of performance on specific scenarios in the test were used. Self-enhancement biases were found across all components of driving skill, including hazard perception. If older drivers’ judgments of their driving capability are unrealistic, then this may compromise the effectiveness of any self-restriction strategies to reduce crash risk.
Resumo:
Drink walking, that is walking in a public place while intoxicated, is associated with increased risk of injury and fatality. Young people and males are especially prone to engaging in this behaviour, yet little is known about the factors associated with individual’s decisions to drink walk. The present research explores the role of different normative influences (friendship group norm, parent group norm, university peer group norm) and perceived risk, within an extended theory of planned behaviour (TPB) framework, in predicting young people’s self-reported drink walking intentions. One hundred and eighteen young people (aged 17-25 years) completed a survey including sociodemographic measures and extended TPB measures related to drink walking. Overall the extended TPB explained 72.8% of the variance in young people’s intentions to drink walk in the next six months with attitude, perceived behavioural control, friendship group norm, and gender (male) emerging as significant predictors. Males, as compared with females, had higher intentions to drink walk and lower perceptions of risk regarding drink walking. Together, these findings provide a clearer indication of the salient normative influences and gender differences in young pedestrian’s decisions to walk while intoxicated. Such findings can be used to inform future interventions designed to reduce injuries and fatalities associated with drink walking.
Resumo:
Making a conscious effort to hide the fact that you are texting while driving (i.e., concealed texting) is a deliberate and risky behaviour involving attention diverted away from the road. As the most frequent users of text messaging services and mobile phones while driving, young people appear at heightened risk of crashing from engaging in this behaviour. This study investigated the phenomenon of concealed texting while driving, and utilised an extended Theory of Planned Behaviour (TPB) including the additional predictors of moral norm, mobile phone involvement, and anticipated regret to predict young drivers’ intentions and subsequent behaviour. Participants (n = 171) were aged 17 to 25 years, owned a mobile phone, and had a current driver’s licence. Participants completed a questionnaire measuring their intention to conceal texting while driving, and a follow-up questionnaire a week later to report their behavioural engagement. The results of hierarchical multiple regression analyses showed overall support for the predictive utility of the TPB with the standard constructs accounting for 69% of variance in drivers’ intentions, and the extended predictors contributing an additional 6% of variance in intentions over and above the standard constructs. Attitude, subjective norm, PBC, moral norm, and mobile phone involvement emerged as significant predictors of intentions; and intention was the only significant predictor of drivers’ self-reported behaviour. These constructs can provide insight into key focal points for countermeasures including advertising and other public education strategies aimed at influencing young drivers to reconsider their engagement in this risky behaviour.
Resumo:
Purpose While there is research indicating that many factors influence the young novice driver's increased risk of road crash injury during the earliest stages of their independent driving, there is a need to further understand the relationship between the perceived risky driving behaviour of parents and friends and the risky behaviour of drivers with a Provisional (intermediate) licence. Method As part of a larger research project, 378 drivers aged 17–25 years (M = 18.22, SD = 1.59, 113 males) with a Provisional licence completed an online survey exploring the perceived riskiness of their parents’ and friends’ driving, and the extent to which they pattern (i.e. base) their driving behaviour on the driving of their parents and friends. Results Young drivers who reported patterning their driving on their friends, and who reported they perceived their friends to be risky drivers, reported more risky driving. The risky driving behaviour of young male drivers was associated with the perceived riskiness of their fathers’ driving, whilst for female drivers the perceived riskiness of their mothers’ driving approached significance. Conclusions The development and application of countermeasures targeting the risky behaviour of same-sex parents appears warranted by the robust research findings. In addition, countermeasures need to encourage young people in general to be non-risky drivers; targeting the negative influence of risky peer groups specifically. Social norms interventions may minimise the influence of potentially-overestimated riskiness.
Resumo:
Background Drink-driving has been implicated in many road traffic crashes in the world. Consequently, the developed countries have prioritized drink-driving research. Contrary, drink-driving research has not attained any meaningful consideration in many developing countries. It is therefore imperative to intensify drink-driving research so as to provide research driven solutions to the menace. Aims The objective is to establish determinants of drink-driving and its association with traffic crashes in Ghana. Methods A randomized roadside breathalyzer survey was conducted. A multivariable logistic regression was used to establish significant determinants of drink-driving and a bivariate logistic regression to establish the association between drink–driving and road traffic crashes in Ghana. Results In total, 2,736 motorists were randomly stopped for breath testing of whom 8.7% tested positive for alcohol. Among the total participants, 5.5% exceeded the legal BAC limit of 0.08%. Formal education is associated with a reduced likelihood of drink-driving compared with drivers without formal education. The propensity to drink-drive is 1.8 times higher among illiterate drivers compared with drivers with basic education. Young adult drivers also recorded elevated likelihoods for driving under alcohol impairment compared with adult drivers. The odds of drink-driving among truck drivers is OR=1.81, (95% CI=1.16 to 2.82) and two wheeler riders is OR=1.41, (95% CI=0.47 to 4.28) compared with car drivers. Contrary to general perception, commercial car drivers have a significant reduced likelihood of 41%, OR=0.59, (95% CI=0.38 to 0.92) compared with the private car driver. Bivariate analysis conducted showed a significant association between the proportion of drivers exceeding the legal BAC limit and road traffic fatalities, p<0.001. The model predicts a 1% increase in the proportion of drivers exceeding the legal BAC to be associated with a 4% increase in road traffic fatalities, 95% CI= 3% to 5% and vice versa. Discussion and conclusion A positive and significant association between roadside alcohol prevalence and road traffic fatality has been established. Scaling up roadside breath test, determining standard drink and disseminating to the populace and formulating policies targeting the youth such as increasing minimum legal drinking age and reduced legal BAC limit for the youth and novice drivers might improve drink-driving related crashes in Ghana.