988 resultados para domicilio digitale, posta elettronica certificata, posta elettronica, pubblica amministrazione
Resumo:
The term Ambient Intelligence (AmI) refers to a vision on the future of the information society where smart, electronic environment are sensitive and responsive to the presence of people and their activities (Context awareness). In an ambient intelligence world, devices work in concert to support people in carrying out their everyday life activities, tasks and rituals in an easy, natural way using information and intelligence that is hidden in the network connecting these devices. This promotes the creation of pervasive environments improving the quality of life of the occupants and enhancing the human experience. AmI stems from the convergence of three key technologies: ubiquitous computing, ubiquitous communication and natural interfaces. Ambient intelligent systems are heterogeneous and require an excellent cooperation between several hardware/software technologies and disciplines, including signal processing, networking and protocols, embedded systems, information management, and distributed algorithms. Since a large amount of fixed and mobile sensors embedded is deployed into the environment, the Wireless Sensor Networks is one of the most relevant enabling technologies for AmI. WSN are complex systems made up of a number of sensor nodes which can be deployed in a target area to sense physical phenomena and communicate with other nodes and base stations. These simple devices typically embed a low power computational unit (microcontrollers, FPGAs etc.), a wireless communication unit, one or more sensors and a some form of energy supply (either batteries or energy scavenger modules). WNS promises of revolutionizing the interactions between the real physical worlds and human beings. Low-cost, low-computational power, low energy consumption and small size are characteristics that must be taken into consideration when designing and dealing with WSNs. To fully exploit the potential of distributed sensing approaches, a set of challengesmust be addressed. Sensor nodes are inherently resource-constrained systems with very low power consumption and small size requirements which enables than to reduce the interference on the physical phenomena sensed and to allow easy and low-cost deployment. They have limited processing speed,storage capacity and communication bandwidth that must be efficiently used to increase the degree of local ”understanding” of the observed phenomena. A particular case of sensor nodes are video sensors. This topic holds strong interest for a wide range of contexts such as military, security, robotics and most recently consumer applications. Vision sensors are extremely effective for medium to long-range sensing because vision provides rich information to human operators. However, image sensors generate a huge amount of data, whichmust be heavily processed before it is transmitted due to the scarce bandwidth capability of radio interfaces. In particular, in video-surveillance, it has been shown that source-side compression is mandatory due to limited bandwidth and delay constraints. Moreover, there is an ample opportunity for performing higher-level processing functions, such as object recognition that has the potential to drastically reduce the required bandwidth (e.g. by transmitting compressed images only when something ‘interesting‘ is detected). The energy cost of image processing must however be carefully minimized. Imaging could play and plays an important role in sensing devices for ambient intelligence. Computer vision can for instance be used for recognising persons and objects and recognising behaviour such as illness and rioting. Having a wireless camera as a camera mote opens the way for distributed scene analysis. More eyes see more than one and a camera system that can observe a scene from multiple directions would be able to overcome occlusion problems and could describe objects in their true 3D appearance. In real-time, these approaches are a recently opened field of research. In this thesis we pay attention to the realities of hardware/software technologies and the design needed to realize systems for distributed monitoring, attempting to propose solutions on open issues and filling the gap between AmI scenarios and hardware reality. The physical implementation of an individual wireless node is constrained by three important metrics which are outlined below. Despite that the design of the sensor network and its sensor nodes is strictly application dependent, a number of constraints should almost always be considered. Among them: • Small form factor to reduce nodes intrusiveness. • Low power consumption to reduce battery size and to extend nodes lifetime. • Low cost for a widespread diffusion. These limitations typically result in the adoption of low power, low cost devices such as low powermicrocontrollers with few kilobytes of RAMand tenth of kilobytes of program memory with whomonly simple data processing algorithms can be implemented. However the overall computational power of the WNS can be very large since the network presents a high degree of parallelism that can be exploited through the adoption of ad-hoc techniques. Furthermore through the fusion of information from the dense mesh of sensors even complex phenomena can be monitored. In this dissertation we present our results in building several AmI applications suitable for a WSN implementation. The work can be divided into two main areas:Low Power Video Sensor Node and Video Processing Alghoritm and Multimodal Surveillance . Low Power Video Sensor Nodes and Video Processing Alghoritms In comparison to scalar sensors, such as temperature, pressure, humidity, velocity, and acceleration sensors, vision sensors generate much higher bandwidth data due to the two-dimensional nature of their pixel array. We have tackled all the constraints listed above and have proposed solutions to overcome the current WSNlimits for Video sensor node. We have designed and developed wireless video sensor nodes focusing on the small size and the flexibility of reuse in different applications. The video nodes target a different design point: the portability (on-board power supply, wireless communication), a scanty power budget (500mW),while still providing a prominent level of intelligence, namely sophisticated classification algorithmand high level of reconfigurability. We developed two different video sensor node: The device architecture of the first one is based on a low-cost low-power FPGA+microcontroller system-on-chip. The second one is based on ARM9 processor. Both systems designed within the above mentioned power envelope could operate in a continuous fashion with Li-Polymer battery pack and solar panel. Novel low power low cost video sensor nodes which, in contrast to sensors that just watch the world, are capable of comprehending the perceived information in order to interpret it locally, are presented. Featuring such intelligence, these nodes would be able to cope with such tasks as recognition of unattended bags in airports, persons carrying potentially dangerous objects, etc.,which normally require a human operator. Vision algorithms for object detection, acquisition like human detection with Support Vector Machine (SVM) classification and abandoned/removed object detection are implemented, described and illustrated on real world data. Multimodal surveillance: In several setup the use of wired video cameras may not be possible. For this reason building an energy efficient wireless vision network for monitoring and surveillance is one of the major efforts in the sensor network community. Energy efficiency for wireless smart camera networks is one of the major efforts in distributed monitoring and surveillance community. For this reason, building an energy efficient wireless vision network for monitoring and surveillance is one of the major efforts in the sensor network community. The Pyroelectric Infra-Red (PIR) sensors have been used to extend the lifetime of a solar-powered video sensor node by providing an energy level dependent trigger to the video camera and the wireless module. Such approach has shown to be able to extend node lifetime and possibly result in continuous operation of the node.Being low-cost, passive (thus low-power) and presenting a limited form factor, PIR sensors are well suited for WSN applications. Moreover techniques to have aggressive power management policies are essential for achieving long-termoperating on standalone distributed cameras needed to improve the power consumption. We have used an adaptive controller like Model Predictive Control (MPC) to help the system to improve the performances outperforming naive power management policies.
Resumo:
L'elaborato è volto ad analizzare i principi di funzionamento e le molteplici applicazioni dei laser chirurgici nei vari campi della medicina. Viene fatta una classificazione in base alla potenza d'uscita delle apparecchiature, al mezzo attivo utilizzato e alla disciplina medica in cui ne viene fatto uso. Particolare attenzione è posta sui numerosi rischi che potrebbero occorrere e le misure di sicurezza da adottare all'interno di una sala operatoria o di un laboratorio, con l'esempio specifico di alcune schede di verifica funzionale, periodica particolare e di manutenzione conservativa su laser chirurgici e terapeutici, che devono essere completate per superare con esito positivo i vari test di sicurezza.
Resumo:
Broad consensus has been reached within the Education and Cognitive Psychology research communities on the need to center the learning process on experimentation and concrete application of knowledge, rather than on a bare transfer of notions. Several advantages arise from this educational approach, ranging from the reinforce of students learning, to the increased opportunity for a student to gain greater insight into the studied topics, up to the possibility for learners to acquire practical skills and long-lasting proficiency. This is especially true in Engineering education, where integrating conceptual knowledge and practical skills assumes a strategic importance. In this scenario, learners are called to play a primary role. They are actively involved in the construction of their own knowledge, instead of passively receiving it. As a result, traditional, teacher-centered learning environments should be replaced by novel learner-centered solutions. Information and Communication Technologies enable the development of innovative solutions that provide suitable answers to the need for the availability of experimentation supports in educational context. Virtual Laboratories, Adaptive Web-Based Educational Systems and Computer-Supported Collaborative Learning environments can significantly foster different learner-centered instructional strategies, offering the opportunity to enhance personalization, individualization and cooperation. More specifically, they allow students to explore different kinds of materials, to access and compare several information sources, to face real or realistic problems and to work on authentic and multi-facet case studies. In addition, they encourage cooperation among peers and provide support through coached and scaffolded activities aimed at fostering reflection and meta-cognitive reasoning. This dissertation will guide readers within this research field, presenting both the theoretical and applicative results of a research aimed at designing an open, flexible, learner-centered virtual lab for supporting students in learning Information Security.
Resumo:
This thesis adresses the problem of localization, and analyzes its crucial aspects, within the context of cooperative WSNs. The three main issues discussed in the following are: network synchronization, position estimate and tracking. Time synchronization is a fundamental requirement for every network. In this context, a new approach based on the estimation theory is proposed to evaluate the ultimate performance limit in network time synchronization. In particular the lower bound on the variance of the average synchronization error in a fully connected network is derived by taking into account the statistical characterization of the Message Delivering Time (MDT) . Sensor network localization algorithms estimate the locations of sensors with initially unknown location information by using knowledge of the absolute positions of a few sensors and inter-sensor measurements such as distance and bearing measurements. Concerning this issue, i.e. the position estimate problem, two main contributions are given. The first is a new Semidefinite Programming (SDP) framework to analyze and solve the problem of flip-ambiguity that afflicts range-based network localization algorithms with incomplete ranging information. The occurrence of flip-ambiguous nodes and errors due to flip ambiguity is studied, then with this information a new SDP formulation of the localization problem is built. Finally a flip-ambiguity-robust network localization algorithm is derived and its performance is studied by Monte-Carlo simulations. The second contribution in the field of position estimate is about multihop networks. A multihop network is a network with a low degree of connectivity, in which couples of given any nodes, in order to communicate, they have to rely on one or more intermediate nodes (hops). Two new distance-based source localization algorithms, highly robust to distance overestimates, typically present in multihop networks, are presented and studied. The last point of this thesis discuss a new low-complexity tracking algorithm, inspired by the Fano’s sequential decoding algorithm for the position tracking of a user in a WLAN-based indoor localization system.
Resumo:
Oggetto di questa tesi di laurea è la riqualificazione funzionale ed energetica di un'autorimessa per corriere costruita a Forlì nel 1935 dal geom. Alberto Flamigni e di proprietà dell' ATR, Agenzia per la Mobilità della provincia di Forlì-Cesena. Al deposito per corriere sono annessi dei piccoli capanni adibiti a magazzini ed una palazzina per uffici costruita negli anni '50, non facente parte del progetto originale. Oggi l'intero complesso risulta in disuso e la richiesta espressa dall'Amministrazione Comunale di Forlì è quella di adattare il comparto per ospitare funzioni musicali, d'intrattenimento e cultura, pensando anche ad un collegamento col manufatto storico dell'Arena Forlivese; quest'ultima, costruita negli anni '20, è situata ai margini del lotto in esame, risulta di proprietà privata ed oggi versa in condizioni di grave degrado. Uno dei fini del progetto, sul filo conduttore delle richieste dell'Amministrazione, è quello di mantenere l'involucro originale dell'edificio, su cui grava anche un vincolo storico, essendo stato progettato durante il periodo fascista ed avendo forti richiami alle soluzioni architettoniche adottate da Marcello Piacentini. Si è quindi deciso di lavorare al suo interno, al fine di creare dei nuclei indipendenti che ospitano le nuove funzioni di auditorium, mediateca, spazio espositivo, sale prova, camerini, mantenendo invece intatto il perimetro in mattoni facciavista con basamento in travertino. Il fronte esposto a sud, essendo stato originariamente pensato come mero elemento di chiusura, senza basamento e sistema di rivestimento ma semplicemente intonacato, si distacca dal resto dell'involucro ed è stato perciò oggetto di maggiori modifiche, in relazione anche al nuovo orientamento d'ingresso pensato per il comparto: l'Amministrazione Comunale ha infatti espresso il desiderio di modificare il percorso di accesso all'edificio, dal fronte nord su piazza Savonarola al fronte ovest su via Ugo Bassi. Il progetto ha adottato un approccio integrato dal punto di vista formale e costruttivo, ponendo particolare attenzione al rispetto e alla valorizzazione della struttura esistente: uno dei punti forti dell'ex deposito è infatti la sua copertura in travi reticolari in c.a. con shed vetrati orientati a nord. Tale sistema di copertura è stato mantenuto per favorire l'illuminazione degli spazi interni, isolato termicamente ed integrato con dei pannelli diffusori che garantiscono una luce uniforme e ben distribuita. Dal punto di vista funzionale e distributivo il progetto ha risposto a criteri di massima flessibilità e fruibilità degli ambienti interni, assecondando le esigenze dell'utenza. Mantenendo la finalità del minimo intervento sull'involucro esistente, nel piano terra si è adottata una tipologia di ambienti open space che delimitano il doppio volume dello spazio espositivo, pensato come un semplice e neutro contenitore, allestibile in base al tipo di mostra ed alla volontà degli organizzatori. Particolare attenzione è stata rivolta alla scelta della tipologia costruttiva per l'auditorium ed i volumi adibiti a sale prova, camerini e depositi, adottando elementi prefabbricati in legno assemblati a secco. Si sono studiati anche i sistemi impiantistici al fine di garantire un elevato livello di comfort interno e nel contempo un considerevole risparmio dal punto di vista energetico. Durante le varie fasi di avanzamento e messa a punto del progetto è stata posta grande attenzione all'aspetto acustico, dalla scelta della forma della sala al trattamento superficiale per garantire un'ottima resa prestazionale, parametro imprescindibile nella progettazione di un adeguato spazio musicale. Altro elemento preso in considerazione a scala locale e urbana è stato quello della sistemazione del cortile a sud, oggi asfaltato ed utilizzato come semplice parcheggio di autobus, al fine di trasformarlo in parco pubblico fruibile dagli utenti del complesso culturale e nel contempo elemento di connessione con l'Arena, tramite un nuovo sistema di orientamenti e percorsi.
Resumo:
“Cartographic heritage” is different from “cartographic history”. The second term refers to the study of the development of surveying and drawing techniques related to maps, through time, i.e. through different types of cultural environment which were background for the creation of maps. The first term concerns the whole amount of ancient maps, together with these different types of cultural environment, which the history has brought us and which we perceive as cultural values to be preserved and made available to many users (public, institutions, experts). Unfortunately, ancient maps often suffer preservation problems of their analog support, mostly due to aging. Today, metric recovery in digital form and digital processing of historical cartography allow preserving map heritage. Moreover, modern geomatic techniques give us new chances of using historical information, which would be unachievable on analog supports. In this PhD thesis, the whole digital processing of recovery and elaboration of ancient cartography is reported, with a special emphasis on the use of digital tools in preservation and elaboration of cartographic heritage. It is possible to divide the workflow into three main steps, that reflect the chapter structure of the thesis itself: • map acquisition: conversion of the ancient map support from analog to digital, by means of high resolution scanning or 3D surveying (digital photogrammetry or laser scanning techniques); this process must be performed carefully, with special instruments, in order to reduce deformation as much as possible; • map georeferencing: reproducing in the digital image the native metric content of the map, or even improving it by selecting a large number of still existing ground control points; this way it is possible to understand the projection features of the historical map, as well as to evaluate and represent the degree of deformation induced by the old type of cartographic transformation (that can be unknown to us), by surveying errors or by support deformation, usually all errors of too high value with respect to our standards; • data elaboration and management in a digital environment, by means of modern software tools: vectorization, giving the map a new and more attractive graphic view (for instance, by creating a 3D model), superimposing it on current base maps, comparing it to other maps, and finally inserting it in GIS or WebGIS environment as a specific layer. The study is supported by some case histories, each of them interesting from the point of view of one digital cartographic elaboration step at least. The ancient maps taken into account are the following ones: • three maps of the Po river delta, made at the end of the XVI century by a famous land-surveyor, Ottavio Fabri (he is single author in the first map, co-author with Gerolamo Pontara in the second map, co-author with Bonajuto Lorini and others in the third map), who wrote a methodological textbook where he explains a new topographical instrument, the squadra mobile (mobile square) invented and used by himself; today all maps are preserved in the State Archive of Venice; • the Ichnoscenografia of Bologna by Filippo de’ Gnudi, made in the 1702 and today preserved in the Archiginnasio Library of Bologna; it is a scenographic view of the city, captured in a bird’s eye flight, but also with an icnographic value, as the author himself declares; • the map of Bologna by the periti Gregorio Monari and Antonio Laghi, the first map of the city derived from a systematic survey, even though it was made only ten years later (1711–1712) than the map by de’ Gnudi; in this map the scenographic view was abandoned, in favor of a more correct representation by means of orthogonal projection; today the map is preserved in the State Archive of Bologna; • the Gregorian Cadastre of Bologna, made in 1831 and updated until 1927, now preserved in the State Archive of Bologna; it is composed by 140 maps and 12 brogliardi (register volumes). In particular, the three maps of the Po river delta and the Cadastre were studied with respect to their acquisition procedure. Moreover, the first maps were analyzed from the georeferencing point of view, and the Cadastre was analyzed with respect to a possible GIS insertion. Finally, the Ichnoscenografia was used to illustrate a possible application of digital elaboration, such as 3D modeling. Last but not least, we must not forget that the study of an ancient map should start, whenever possible, from the consultation of the precious original analogical document; analysis by means of current digital techniques allow us new research opportunities in a rich and modern multidisciplinary context.
Resumo:
Satellite SAR (Synthetic Aperture Radar) interferometry represents a valid technique for digital elevation models (DEM) generation, providing metric accuracy even without ancillary data of good quality. Depending on the situations the interferometric phase could be interpreted both as topography and as a displacement eventually occurred between the two acquisitions. Once that these two components have been separated it is possible to produce a DEM from the first one or a displacement map from the second one. InSAR DEM (Digital Elevation Model) generation in the cryosphere is not a straightforward operation because almost every interferometric pair contains also a displacement component, which, even if small, when interpreted as topography during the phase to height conversion step could introduce huge errors in the final product. Considering a glacier, assuming the linearity of its velocity flux, it is therefore necessary to differentiate at least two pairs in order to isolate the topographic residue only. In case of an ice shelf the displacement component in the interferometric phase is determined not only by the flux of the glacier but also by the different heights of the two tides. As a matter of fact even if the two scenes of the interferometric pair are acquired at the same time of the day only the main terms of the tide disappear in the interferogram, while the other ones, smaller, do not elide themselves completely and so correspond to displacement fringes. Allowing for the availability of tidal gauges (or as an alternative of an accurate tidal model) it is possible to calculate a tidal correction to be applied to the differential interferogram. It is important to be aware that the tidal correction is applicable only knowing the position of the grounding line, which is often a controversial matter. In this thesis it is described the methodology applied for the generation of the DEM of the Drygalski ice tongue in Northern Victoria Land, Antarctica. The displacement has been determined both in an interferometric way and considering the coregistration offsets of the two scenes. A particular attention has been devoted to investigate the importance of the role of some parameters, such as timing annotations and orbits reliability. Results have been validated in a GIS environment by comparison with GPS displacement vectors (displacement map and InSAR DEM) and ICEsat GLAS points (InSAR DEM).