975 resultados para depth perception


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The visual analysis of surface shape from texture and surface contour is treated within a computational framework. The aim of this study is to determine valid constraints that are sufficient to allow surface orientation and distance (up to a multiplicative constant) to be computed from the image of surface texture and of surface contours.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose – The purpose of this paper is twofold. The first aim is to obtain a valid and reliable instrument for the holistic analysis of sporting events, and the second is to test a causal model in which future intentions depend on spectators’ perceptions of quality, satisfaction, and value of these events. Design/methodology/approach – A total of 493 spectators of a professional basketball team in the Spanish ACB league responded to a survey to measure the overall performance of the sporting event service. Exploratory factor analysis and further confirmatory factor analysis using structural equation models provides the methodology for testing the reliability and validity of the instrument. Findings – The scales have adequate reliability and validity indices. The path model explains 35.8 percent of the variance in future intentions, 54.0 percent in perceived value, and 49.5 percent in spectators’ satisfaction. Quality proves a better predictor of perceived value than satisfaction. Both perceived value and satisfaction have a similar weight in predicting spectators’ future intentions. The data indicate that quality has an effect on spectators’ future intentions, by altering their perceptions of value and satisfaction. Research limitations/implications – The research findings are somewhat limited, due to the sample consisting entirely of spectators of a single team in the Spanish ACB league. Practical implications – Managers can use these findings to develop loyalty strategies by creating service value and increasing spectators’ satisfaction through quality improvements. Originality/value – This study contributes to the literature on service quality by providing an overall measure to assess service in professional sporting events in a Latin-American context.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

X. Zhang and M.H. Lee, 'From Perception to Cognition of Objects', Proceedings of Towards Autonomous Robotic Systems, (TAROS-06), pp 262-67, University of Guildford, Surrey, 2006.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de Mestrado apresentada à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Ciências da Comunicação, com especialização em Marketing e Comunicação Estratégica.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that if a language is recognized within certain error bounds by constant-depth quantum circuits over a finite family of gates, then it is computable in (classical) polynomial time. In particular, our results imply EQNC^0 ⊆ P, where EQNC^0 is the constant-depth analog of the class EQP. On the other hand, we adapt and extend ideas of Terhal and DiVincenzo [?] to show that, for any family

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small depth quantum circuits have proved to be unexpectedly powerful in comparison to their classical counterparts. We survey some of the recent work on this and present some open problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A model of laminar visual cortical dynamics proposes how 3D boundary and surface representations of slated and curved 3D objects and 2D images arise. The 3D boundary representations emerge from interactions between non-classical horizontal receptive field interactions with intracorticcal and intercortical feedback circuits. Such non-classical interactions contextually disambiguate classical receptive field responses to ambiguous visual cues using cells that are sensitive to angles and disparity gradients with cortical areas V1 and V2. These cells are all variants of bipole grouping cells. Model simulations show how horizontal connections can develop selectively to angles, how slanted surfaces can activate 3D boundary representations that are sensitive to angles and disparity gradients, how 3D filling-in occurs across slanted surfaces, how a 2D Necker cube image can be represented in 3D, and how bistable Necker cuber percepts occur. The model also explains data about slant aftereffects and 3D neon color spreading. It shows how habituative transmitters that help to control developement also help to trigger bistable 3D percepts and slant aftereffects, and how attention can influence which of these percepts is perceived by propogating along some object boundaries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The perception of a glossy surface in a static monochromatic image can occur when a bright highlight is embedded in a compatible context of shading and a bounding contour. Some images naturally give rise to the impression that a surface has a uniform reflectance, characteristic of a shiny object, even though the highlight may only cover a small portion of the surface. Nonetheless, an observer may adopt an attitude of scrutiny in viewing a glossy surface, whereby the impression of gloss is partial and nonuniform at image regions outside of a higlight. Using a rating scale and small probe points to indicate image locations, differential perception of gloss within a single object is investigate in the present study. Observers' gloss ratings are not uniform across the surface, but decrease as a function of distance from highlight. When, by design, the distance from a highlight is uncoupled from the luminance value at corresponding probe points, the decrease in rated gloss correlates more with the distance than with the luminance change. Experiments also indicate that gloss ratings change as a function of estimated surface distance, rather than as a function of image distance. Surface continuity affects gloss ratings, suggesting that apprehension of 3D surface structure is crucial for gloss perception.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lehar's lively discussion builds on a critique of neural models of vision that is incorrect in its general and specific claims. He espouses a Gestalt perceptual approach, rather than one consistent with the "objective neurophysiological state of the visual system" (p. 1). Contemporary vision models realize his perceptual goals and also quantitatively explain neurophysiological and anatomical data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article develops a neural model of how the visual system processes natural images under variable illumination conditions to generate surface lightness percepts. Previous models have clarified how the brain can compute the relative contrast of images from variably illuminate scenes. How the brain determines an absolute lightness scale that "anchors" percepts of surface lightness to us the full dynamic range of neurons remains an unsolved problem. Lightness anchoring properties include articulation, insulation, configuration, and are effects. The model quantatively simulates these and other lightness data such as discounting the illuminant, the double brilliant illusion, lightness constancy and contrast, Mondrian contrast constancy, and the Craik-O'Brien-Cornsweet illusion. The model also clarifies the functional significance for lightness perception of anatomical and neurophysiological data, including gain control at retinal photoreceptors, and spatioal contrast adaptation at the negative feedback circuit between the inner segment of photoreceptors and interacting horizontal cells. The model retina can hereby adjust its sensitivity to input intensities ranging from dim moonlight to dazzling sunlight. A later model cortical processing stages, boundary representations gate the filling-in of surface lightness via long-range horizontal connections. Variants of this filling-in mechanism run 100-1000 times faster than diffusion mechanisms of previous biological filling-in models, and shows how filling-in can occur at realistic speeds. A new anchoring mechanism called the Blurred-Highest-Luminance-As-White (BHLAW) rule helps simulate how surface lightness becomes sensitive to the spatial scale of objects in a scene. The model is also able to process natural images under variable lighting conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

How does the brain make decisions? Speed and accuracy of perceptual decisions covary with certainty in the input, and correlate with the rate of evidence accumulation in parietal and frontal cortical "decision neurons." A biophysically realistic model of interactions within and between Retina/LGN and cortical areas V1, MT, MST, and LIP, gated by basal ganglia, simulates dynamic properties of decision-making in response to ambiguous visual motion stimuli used by Newsome, Shadlen, and colleagues in their neurophysiological experiments. The model clarifies how brain circuits that solve the aperture problem interact with a recurrent competitive network with self-normalizing choice properties to carry out probablistic decisions in real time. Some scientists claim that perception and decision-making can be described using Bayesian inference or related general statistical ideas, that estimate the optimal interpretation of the stimulus given priors and likelihoods. However, such concepts do not propose the neocortical mechanisms that enable perception, and make decisions. The present model explains behavioral and neurophysiological decision-making data without an appeal to Bayesian concepts and, unlike other existing models of these data, generates perceptual representations and choice dynamics in response to the experimental visual stimuli. Quantitative model simulations include the time course of LIP neuronal dynamics, as well as behavioral accuracy and reaction time properties, during both correct and error trials at different levels of input ambiguity in both fixed duration and reaction time tasks. Model MT/MST interactions compute the global direction of random dot motion stimuli, while model LIP computes the stochastic perceptual decision that leads to a saccadic eye movement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

National Science Foundation (SBE-0354378); Office of Naval Research (N00014-01-1-0624)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advanced Research Projects Agency (ONR N00014-92-J-4015); National Science Foundation (IRI-90-24877); Office of Naval Research (N00014-91-J-4100)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article applies a recent theory of 3-D biological vision, called FACADE Theory, to explain several percepts which Kanizsa pioneered. These include 3-D pop-out of an occluding form in front of an occluded form, leading to completion and recognition of the occluded form; 3-D transparent and opaque percepts of Kanizsa squares, with and without Varin wedges; and interactions between percepts of illusory contours, brightness, and depth in response to 2-D Kanizsa images. These explanations clarify how a partially occluded object representation can be completed for purposes of object recognition, without the completed part of the representation necessarily being seen. The theory traces these percepts to neural mechanisms that compensate for measurement uncertainty and complementarity at individual cortical processing stages by using parallel and hierarchical interactions among several cortical processing stages. These interactions are modelled by a Boundary Contour System (BCS) that generates emergent boundary segmentations and a complementary Feature Contour System (FCS) that fills-in surface representations of brightness, color, and depth. The BCS and FCS interact reciprocally with an Object Recognition System (ORS) that binds BCS boundary and FCS surface representations into attentive object representations. The BCS models the parvocellular LGN→Interblob→Interstripe→V4 cortical processing stream, the FCS models the parvocellular LGN→Blob→Thin Stripe→V4 cortical processing stream, and the ORS models inferotemporal cortex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Speech can be understood at widely varying production rates. A working memory is described for short-term storage of temporal lists of input items. The working memory is a cooperative-competitive neural network that automatically adjusts its integration rate, or gain, to generate a short-term memory code for a list that is independent of item presentation rate. Such an invariant working memory model is used to simulate data of Repp (1980) concerning the changes of phonetic category boundaries as a function of their presentation rate. Thus the variability of categorical boundaries can be traced to the temporal in variance of the working memory code.