966 resultados para dendritic cell vaccine
Resumo:
Dendritic cells (DC) are potent APCs that enter resting tissues as precursors and, after Ag exposure, differentiate and migrate to draining lymph nodes. The phenotype of RelB knockout mice implicates this member of the NF kappa B/Rel family in DC differentiation. To further elucidate the role of RelB in DC differentiation, mRNA, intracellular protein expression, and DNA binding activity of RelB were examined in immature and differentiated human DC, as well as other PB mononuclear cell populations. RelB protein and mRNA were detected constitutively in lymphocytes and in activated monocytes, differentiated DC, and monocyte-derived DC. Immunohistochemical staining demonstrated RelB within the differentiated lymph node interdigitating DC and follicular DC, but not undifferentiated DC in normal skin. Active nuclear RelB was detected by supershift assay only in differentiated DC derived from either PB precursors or monocytes and in activated B cells. These RelB(+) APC were potent stimulators of the MLR. The data indicate that RelB expression is regulated both transcriptionally and post-translationally in myeloid cells. Within the nucleus, RelB may specifically transactivate genes that are critical for APC function.
Resumo:
The Leishmune (R) vaccine has been used in endemic areas to prevent canine visceral leishmaniasis in Brazil, but cytokine production induced by vaccination has rarely been investigated in dogs. This study aimed to evaluate the immune response of dogs vaccinated with Leishmune FML vaccine (Fort Dodge) against total antigen of Leishmania (Leishmania) chagasi (TAg) and FML. Twenty healthy dogs from Aracatuba, Sao Paulo, Brazil, an endemic leishmaniasis area, received three consecutive subcutaneous injection of Leishmune vaccine at 21-day intervals. PBMC were isolated before and 10 days after completing vaccination and lymphoproliferative response and antibody production against FML or total promastigote antigen were tested. Cytokines IFN-gamma, IL-4 and TNF-alpha were measured in culture supernatant and CD4+/CD25+ and CD8+/CD25+ T cell presence was determined. Analysis of the data indicated that the vaccine conferred humoral responses (100%) against both antigens and cellular immunity to FML (85%) and total antigen (80%), the supernatant of cultured cells stimulated with TAg and FML showed an increase in IFN-gamma (P < 0.05), and the vaccine reduced CD4+/CD25+ T cell presence compared to that observed before vaccination. These responses may constitute part of the immune mechanism induced by Leishmune. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Retinal neurons with distinct dendritic morphologies are likely to comprise different cell types, subject to three important caveats. First, it is necessary to avoid creating “artificial” cell types based on arbitrary criteria—for example, the presence of two or three primary dendrites. Second, it is essential to take into account changes in morphology with retinal eccentricity and cell density. Third, the retina contains imperfections like any natural system and a significant number of retinal neurons display aberrant morphologies or make aberrant connections that are not typical of the population as a whole. Many types of retinal ganglion cells show diverse patterns of tracer coupling, with the simplest pattern represented by the homologous coupling shown by On-Off direction-selective (DS) ganglion cells in the rabbit retina. Neighboring DS ganglion cells with a common preferred direction have regularly spaced somata and territorial dendritic fields, whereas DS ganglion cells with different preferred directions may have closely spaced somata and overlapping dendritic fields.
Resumo:
We measured T-cell responses to human immunodeficiency virus type 1 (HIV-1) cryptic epitopes encoded by regions of the viral genome not normally translated into viral proteins. T-cell responses to cryptic epitopes and to regions normally spliced out of the HIV-1 viral proteins Rev and Tat were detected in HIV-1-infected subjects.
Resumo:
P>Background The evolution and therapeutic outcome of American tegumentary leishmaniasis (ATL) depend upon many factors, including the balance between Th1 and Th2 cytokines to control parasite multiplication and lesion extension. Other cytokines known for their role in inflammatory processes such as interleukin IL-17 or IL-18 as well as factors controlling keratinocyte differentiation and the inflammatory process in the skin, like the Notch system, could also be involved in the disease outcome. Notch receptors are a group of transmembrane proteins that regulate cell fate decisions during development and adulthood in many tissues, including keratinocyte differentiation and T-cell lineage commitment, depending on their activation by specific groups of ligands (Delta-like or Jagged). Objectives To compare the in situ expression of Notch system proteins (receptors, ligands and transcriptional factors) and cytokines possibly involved in the disease outcome (IL-17, IL-18, IL-23 and transforming growth factor-beta) in ATL cutaneous and mucosal lesions, according to the response to therapy with N-methyl glucamine. Methods Cutaneous and mucosal biopsies obtained from patients prior to therapy with N-methyl glucamine were analysed by immunohistochemistry and real-time polymerase chain reaction. Results Notch receptors and Delta-like ligands were found increased in patients with ATL, particularly those with poor response to therapy or with mucosal lesions. Conclusions The increase of Notch receptors and Delta-like ligands in patients with a poor response to treatment suggests that these patients would require a more aggressive therapeutic approach or at least a more thorough and rigorous follow-up.
Resumo:
In the last decades, the incidence of histoplasmosis, a pulmonary fungal disease caused by Histoplasma capsulatum, has increased worldwide. In this context, vaccines for the prevention of this infection or therapies are necessary. Cell-free antigens (CFAgs) from H. capsulatum when administered for murine immunization purposes are able to confer protection and control of the infection, since they activate cellular immunity. However the most of vaccination procedures need several anti, gens administrations and immunoadjuvants, which are not approved for use in humans. The aim of this study was to develop and characterize a vaccination approach using biodegradable PLGA microspheres (MS) that could allow the controlled and/or sustained release of the encapsulated antigens from H. capsulatum. CFAgs-loaded MS presented a size less than 10 mu m, were marked engulfed by bone marrow-derived macrophages (BMDM phi) and induced the nitric oxide (NO) and tumor necrosis factor-alpha (TNF-alpha) production by these cells. Our data show that CFAgs-loaded MS induce cell activation, suggesting an immunostimulant effect to be further investigated during immunization procedures. CFAgs-loaded MS present potential to be used as vaccine in order to confer protection against H. capsulatum infection. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This study evaluated four polymorphisms located in the DC-SIGN (CD209) gene promoter region (positions -336, -332 -201 and -139) in DNA samples from four Brazilian ethnic groups (Caucasians, Afro-Brazilian, Asians and Amerindians) to establish the population distribution of these single-nucleotide polymorphisms (SNPs) and correlated DC-SIGN polymorphisms and infection in samples from human T-cell lymphotropic virus type 1 (HTLV-1)-infected individuals. To identify CD209 SNPs, 452 bp of the CD209 promoter region were sequenced and the genotype and allelic frequencies were evaluated. This is the first study to show genetic polymorphism in the CD209 gene in distinct Brazilian ethnic groups with the distribution of allelic and genotypic frequency. The results showed that -336A and -139A SNPs were quite common in Asians and that the -201T allele was not observed in Caucasians, Asians or Amerindians. No significant differences were observed between individuals with HTLV-1 disease and asymptomatic patients. However, the -336A variant was more frequent in HTLV-1 -infected patients [HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), 80%; healthy asymptomatic HTLV-1 carriers, 90 %] than in the control group (70 %) [P=0.0197, odds ratio (OR)=2.511, 95 % confidence interval (CI)=1.218-5.179). In addition, the -139A allele was found to be associated with protection against HTLV-1 infection (P=0.0037, OR=0.3758, 95% CI=0.1954-0.7229) when the HTLV-1 -infected patients as a whole were compared with the healthy-control group. These observations suggest that the -139A allele may be associated with HTLV-1 infection, although no significant association was observed among asymptomatic and HAM/TSP patients. In conclusion, the variation observed in SNPs -336 and -139 indicates that this lectin may be of crucial importance in the susceptibility/transmission of HTLV-1 infections.
Resumo:
Principal cells of the medial nucleus of the trapezoid body (MNTB) are simple round neurons that receive a large excitatory synapse (the calyx of Held) and many small inhibitory synapses on the soma. Strangely, these neurons also possess one or two short tufted dendrites, whose function is unknown. Here we assess the role of these MNTB cell dendrites using patch-clamp recordings, imaging and immunohistochemistry techniques. Using outside-out patches and immunohistochemistry, we demonstrate the presence of dendritic Na(+) channels. Current-clamp recordings show that tetrodotoxin applied onto dendrites impairs action potential (AP) firing. Using Na(+) imaging, we show that the dendrite may serve to maintain AP amplitudes during high-frequency firing, as Na(+) clearance in dendritic compartments is faster than axonal compartments. Prolonged high-frequency firing can diminish Na(+) gradients in the axon while the dendritic gradient remains closer to resting conditions; therefore, the dendrite can provide additional inward current during prolonged firing. Using electron microscopy, we demonstrate that there are small excitatory synaptic boutons on dendrites. Multi-compartment MNTB cell simulations show that, with an active dendrite, dendritic excitatory postsynaptic currents (EPSCs) elicit delayed APs compared with calyceal EPSCs. Together with high- and low-threshold voltage-gated K(+) currents, we suggest that the function of the MNTB dendrite is to improve high-fidelity firing, and our modelling results indicate that an active dendrite could contribute to a `dual` firing mode for MNTB cells (an instantaneous response to calyceal inputs and a delayed response to non-calyceal dendritic excitatory postsynaptic potentials).
Resumo:
Background. Despite diagnostic and therapeutic advances in head and neck cancer, the 5-year survival of patients with laryngeal cancer has not improved in the last 30 years. Several recent studies indicate that specific targets for immunotherapeutic approaches can be useful in the control of cancer. There is considerable interest in the expression of cancer testis antigens in human cancers since they may serve as the basis for an immunologic approach to therapy. Methods. We evaluated by immunohistochemical analysis the expression of cancer testis antigens MAGE-A4 (57B), MAGE-C1 (CT7-33), MAGE-A1 (MA454), MAGE-A3 (M3H67), MAGE-C2 (CT10.5), NY-ESO-1 (E978), and GAGE (GAGE) in squamous cell carcinoma (SCC) of the larynx. Results. A total of 63 cases (57 men and 6 women) of laryngeal SCC were available for this study. The findings were correlated with the clinical course and laboratory data. Expression of at least 1 cancer testis antigen was detected in 42 of 63 of the laryngeal SCCs (67%). In 34 of 42 of the positive cases (81%) there was simultaneous expression of >= 2 cancer testis antigens. There was significant correlation between antigen expression and advanced tumor stage (stage III/IV) in cases with reactivity to only 1 antibody (p = .01) as well as in the cases with reactivity to >= 2 primary antibodies (>= 2 mAbs, p = .04). There was no association between survival and expression of any of the analyzed antigens. Conclusions. We find a high incidence of cancer testis antigen expression in SCCs of the larynx, which was correlated with advanced clinical stage. Our data indicate that cancer testis antigens could be valuable vaccine targets in laryngeal tumors, especially in those with a worse prognosis. (C) 2010 Wiley Periodicals, Inc. Head Neck 33: 702-707, 2011
Resumo:
In an effort to develop a suitable DNA vaccine candidate for dengue, using dengue-3 virus (DENV-3) as a prototype, the genes coding for premembrane (prM) and envelope proteins (E) were inserted into an expression plasmid. After selecting recombinant clones containing prM/E genes, protein expression in the cell monolayer was detected by indirect immunofluorescence and immunoprecipitation assays. After selecting three vaccine candidates (pVAC1DEN3, pVAC2DEN3 and pVAC3DEN3), they were analyzed in vivo to determine their ability to induce a DENV-3-specific immune response. After three immunizations, the spleens of the immunized animals were isolated, and the cells were cultivated to measure cytokine levels by ELISA and used for lymphoproliferation assays. All of the animals inoculated with the recombinant clones induced neutralizing antibodies against DENV-3 and produced a T cell proliferation response after specific stimuli. Immunized and control mice were challenged with a lethal dose of DENV-3 and observed in order to assess their survival capability. The groups that presented the best survival rate after the challenge were the animals vaccinated with the pVAC3DEN3 clones, with an 80% survival rate. Thus, these data show that we have manufactured a vaccine candidate for DENV-3 that is able to induce a specific immune response and protects mice against a lethal challenge.
Resumo:
A DNA vaccine expressing dengue-4 virus premembrane (prM) and envelope (E) genes was produced by inserting these genes into a mammalian expression plasmid (pCI). Following a thorough screening, including confirmation of protein expression in vitro, a recombinant clone expressing these genes was selected and used to immunize BALB/c mice. After 3 immunizations all the animals produced detectable levels of neutralizing antibodies against dengue-4 virus. The cytokines levels and T cell proliferation, detected ex vivo from the spleen of the immunized mice, showed that our construction induced substantial immune stimulation after three doses. Even though the antibody levels, induced by our DNA vaccine, were lower than those obtained in mice immunized with dengue-4 virus the levels of protection were high with this vaccine. This observation is further supported by the fact that 80% of the vaccine immunized group was protected against lethal challenge. In conclusion, we developed a DNA vaccine employing the genes of the prM and E proteins from dengue-4 virus that protects mice against this virus. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Neospora caninum is an apicomplexan parasite responsible for major economic losses due to abortions in cattle. Toll-like receptors (TLRs) sense specific microbial products and direct downstream signaling pathways in immune cells, linking innate, and adaptive immunity. Here, we analyze the role of TLR2 on innate and adaptive immune responses during N. caninum infection. Inflammatory peritoneal macrophages and bone marrow-derived dendritic cells exposed to N. caninum-soluble antigens presented an upregulated expression of TLR2. Increased receptor expression was correlated to TLR2/MyD88-dependent antigen-presenting cell maturation and pro-inflammatory cytokine production after stimulation by antigens. Impaired innate responses observed after infection of mice genetically deficient for TLR2((-/-)) was followed by downregulation of adaptive T helper 1 (Th1) immunity, represented by diminished parasite-specific CD4(+) and CD8(+) T-cell proliferation, IFN-gamma:interleukin (IL)-10 ratio, and IgG subclass synthesis. In parallel, TLR2(-/-) mice presented higher parasite burden than wild-type (WT) mice at acute and chronic stages of infection. These results show that initial recognition of N. caninum by TLR2 participates in the generation of effector immune responses against N. caninum and imply that the receptor may be a target for future prophylactic strategies against neosporosis. Immunology and Cell Biology (2010) 88, 825-833; doi:10.1038/icb.2010.52; published online 20 April 2010
Resumo:
The superior cervical ganglion (SCG) in mammals varies in structure according to developmental age, body size, gender, lateral asymmetry, the size and nuclear content of neurons and the complexity and synaptic coverage of their dendritic trees. In small and medium-sized mammals, neuron number and size increase from birth to adulthood and, in phylogenetic studies, vary with body size. However, recent studies on larger animals suggest that body weight does not, in general, accurately predict neuron number. We have applied design-based stereological tools at the light-microscopic level to assess the volumetric composition of ganglia and to estimate the numbers and sizes of neurons in SCGs from rats, capybaras and horses. Using transmission electron microscopy, we have obtained design-based estimates of the surface coverage of dendrites by postsynaptic apposition zones and model-based estimates of the numbers and sizes of synaptophysin-labelled axo-dendritic synaptic disks. Linear regression analysis of log-transformed data has been undertaken in order to establish the nature of the relationships between numbers and SCG volume (V(scg)). For SCGs (five per species), the allometric relationship for neuron number (N) is N=35,067xV (scg) (0.781) and that for synapses is N=20,095,000xV (scg) (1.328) , the former being a good predictor and the latter a poor predictor of synapse number. Our findings thus reveal the nature of SCG growth in terms of its main ingredients (neurons, neuropil, blood vessels) and show that larger mammals have SCG neurons exhibiting more complex arborizations and greater numbers of axo-dendritic synapses.
Resumo:
At the end of 2002 and throughout 2003, there was a severe outbreak of infectious laryngotracheitis (ILT) in an intensive production area of commercial hens in the Sao Paulo State of Brazil. ILT virus was isolated from 28 flocks, and 21 isolates were genotyped by polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) using four genes and eight restriction enzymes, and by partial sequencing of the infected cell protein 4 (ICP4) and thymidine kinase (TK) genes. Three groups resulted from the combinations of PCR-RFLP patterns: 19 field isolates formed Group I, and the remaining two isolates together with the chicken embryo origin (CEO) vaccine strains formed Group II. Group III comprised the tissue-culture origin (TCO) vaccine strain by itself. The PCR-RFLP results agreed with the sequencing results of two ICP4 gene fragments. The ICP4 gene sequence analysis showed that the 19 field isolates classified into Group I by RFLP-PCR were identical among themselves, but were different to the TCO and CEO vaccines. The two Group II isolates could not be distinguished from one of the CEO vaccines. The nucleotide and amino acid sequence analyses discriminated between the Brazilian and non-Brazilian isolates, as well as between the TCO and CEO vaccines. Sequence analysis of the TK gene enabled classification of the field isolates (Group I) as virulent and non-vaccine. This work shows that the severe ILT outbreak was caused by a highly virulent, non-vaccine strain.
Resumo:
Two different regions of the infected cell protein 4 (ICP4) gene of infectious laryngotracheitis virus (ILTV) were amplified and sequenced for characterization of field isolates and tissue culture-origin (TCO) and chicken embryo-origin (CEO) vaccine strains. Phylogenetic analysis of the two regions showed differences in nucleotide and amino acid sequences between field isolates and attenuated vaccines. The PCR-RFLP results were identical to those obtained by DNA sequencing and validated their use to differentiate ILTV strains. The approach using the sequencing of the two fragments of the ICP4 gene showed to be an efficient and practical procedure to differentiate between field isolates and vaccine strains of ILTV. (C) 2009 Elsevier Ltd. All rights reserved.