994 resultados para copper sulfate
Resumo:
Under the environment of seawater, durability of concrete materials is one of the chief factors considered in the design of structures. The decrease of durability of structures is induced by the evolution of micro-damage due to the erosion of chlorine and sulfate ions, which is characterized by the reduction of modulus, strength, and toughness of the material. In this paper, the variation of the flexural strength of cement mortar under sulfate erosion is investigated. The results obtained in present work indicate that the erosion time, concentration of sulfate solution, and water-to-cement ratio will significantly affect the flexural strength. Crown Copyright (c) 2008 Published by Elsevier Ltd. All rights reserved.
Resumo:
Mechanical behavior and microstructure evolution of polycrystalline copper with nano-twins were investigated in the present work by finite element simulations. The fracture of grain boundaries are described by a cohesive interface constitutive model based on the strain gradient plasticity theory. A systematic study of the strength and ductility for different grain sizes and twin lamellae distributions is performed. The results show that the material strength and ductility strongly depend on the grain size and the distribution of twin lamellae microstructures in the polycrystalline copper.
Resumo:
The template-directed fabrication of highly-ordered porous film is of significant importance in implementation of the photonic band gap structure. The paper reports a simple and effective method to improve the electrodeposition of metal porous film by utilizing highly-ordered polystyrene spheres (PSs) template. By surface-modification method, the hydrophobic property of the PSs template surfaces was changed into hydrophilic one. It was demonstrated that the surface modi. cation process enhanced the permeability of the electrolyte solution in the nanometer-sized voids of the colloidal template. The homogeneously deposited copper film with the highly-ordered voids in size of less than 500 nm was successfully obtained. In addition, it was found that large defects, such as microcracks in the template, strongly influenced the macroporous films quality. An obvious preferential growth in the cracked area was observed. (C) 2008 Elsevier B. V. All rights reserved.
Resumo:
We present a model in this paper for predicting the inverse Hall-Petch phenomenon in nanocrystalline (NC) materials which are assumed to consist of two phases: grain phase of spherical or spheroidal shapes and grain boundary phase. The deformation of the grain phase has an elasto-viscoplastic behavior, which includes dislocation glide mechanism, Coble creep and Nabarro-Herring creep. However the deformation of grain boundary phase is assumed to be the mechanism of grain boundary diffusion. A Hill self-consistent method is used to describe the behavior of nanocrystalline pure copper subjected to uniaxial tension. Finally, the effects of grain size and its distribution, grain shape and strain rate on the yield strength and stress-strain curve of the pure copper are investigated. The obtained results are compared with relevant experimental data in the literature.
Resumo:
The formation and mechanical properties of amorphous copper are studied using molecular dynamics simulation. The simulations of tension and shearing show that more pronounced plasticity is found under shearing, compared to tension. Apparent strain hardening and strain rate effect are observed. Interestingly, the variations of number density of atoms during deformation indicate free volume creation, especially under higher strain rate. In particular, it is found that shear induced dilatation does appear in the amorphous metal.
Resumo:
Predictions based on an anisotropic elastic-plastic constitutive model proposed in the first part of this paper are compared with the experimental stress and strain data on OHFC copper under first torsion to about 13% and partial unloading, and then tension-torsion to about 10% along eight different loading paths. This paper also describes the deformation and stress of the thin-walled tubular specimen under finite deformation, the numerical implementation of the model, and the detailed procedure for determining the material parameters in the model. Finally, the model is extended to a general representation of the multiple directors, and the elastic-viscoplastic extension of the constitutive model is considered.
Resumo:
The stress-strain relations of nanocrystalline twin copper with variously sized grains and twins are studied by using FEM simulations based on the conventional theory of mechanism-based strain gradient plasticity (CMSG). A model of twin lamellae strengthening zone is proposed and a cohesive interface model is used to simulate grain-boundary sliding and separation. Effects of material parameters on stress-strain curves of polycrystalline twin copper are studied in detail. Furthermore, the effects of both twin lamellar spacing and twin lamellar distribution on the stress-strain relations are investigated under tension loading. The numerical simulations show that both the strain gradient effect and the material hardening increase with decreasing the grain size and twin lamellar spacing. The distribution of twin lamellae has a significant influence on the overall mechanical properties, and the effect is reduced as both the grain size and twin lamellar spacing decrease. Finally, the FEM prediction results are compared with the experimental data.
Resumo:
The plastic deformation of polycrystalline Cu with ultrathin lamella twins has been studied using molecular dynamics simulations. The results of uniaxial tensile deformation simulation show that the abundance of twin boundaries provides obstacles to dislocation motion, which in consequence leads to a high strain hardening rate in the nanotwinned Cu. We also show that the twin lamellar spacing plays a vital role in controlling the strengthening effects, i.e., the thinner the thickness of the twin lamella, the harder the material. Additionally, twin boundaries can act as dislocation nucleation sites as they gradually lose coherency at large strain. These results indicate that controlled introduction of nanosized twins into metals can be an effective way of improving strength without suppression tensile ductility. (C) 2007 American Institute of Physics.
Resumo:
Experimental stress-strain data of OFHC copper first under torsion to 13% and then under torsion-tension to about 10% are used to study the characteristics of three elastic-plastic constitutive models: Chaboche's super-positional nonlinear model, Dafalias and Popov's two surface model and Watanabe and Atluri's version of the endochronic model. The three models, originally oriented for infinitesimal deformation, have been extended for finite deformation. The results show (a) the Mises-type yield surface used in the three models brings about significant departure of the predictions from the experimental data; (b) Chaboche's and Dafalias' models are easier than Watanabe and Atluri's model in determining the material parameters in them, and (c) Chaboche's and Watanabe & Atluri's models produce almost the same prediction to the data, while Dafalias' model cannot accurately predict the plastic deformations when a loading path changes in its direction. Copyright (C) 1996 Elsevier Science Ltd
Resumo:
The unstable stacking criteria for an ideal copper crystal under homogeneous shearing and for a cracked copper crystal under pure mode II loading are analysed. For the ideal crystal under homogeneous shearing, the unstable stacking energy gamma(us) defined by Rice in 1992 results from shear with no relaxation in the direction normal to the slip plane. For the relaxed shear configuration, the critical condition for unstable stacking does not correspond to the relative displacement Delta = b(p)/2, where b(p) is the Burgers vector magnitude of the Shockley partial dislocation, but to the maximum shear stress. Based on this result, the unstable stacking energy Gamma(us) is defined for the relaxed lattice. For the cracked crystal under pure mode II loading, the dislocation configuration corresponding to Delta = b(p)/2 is a stable state and no instability occurs during the process of dislocation nucleation. The instability takes place at approximately Delta = 3b(p)/4. An unstable stacking energy Pi(us) is defined which corresponds to the unstable stacking state at which the dislocation emission takes place. A molecular dynamics method is applied to study this in an atomistic model and the results verify the analysis above.
Resumo:
The crack tip processes in copper under mode II loading have been simulated by a molecular dynamics method. The nucleation, emission, dislocation free zone (DFZ) and pile-up of the dislocations are analyzed by using a suitable atom lattice configuration and Finnis & Sinclair potential. The simulated results show that the dislocation emitted always exhibits a dissociated fashion. The stress intensity factor for dislocation nucleation, DFZ and dissociated width of partial dislocations are strongly dependent on the loading rate. The stress distributions are in agreement with the elasticity solution before the dislocation emission, but are not in agreement after the emission. The dislocation can move at subsonic wave speed (less than the shear wave speed) or at transonic speed (greater than the shear wave speed but less than the longitudinal wave speed), but at the longitudinal wave speed the atom lattice breaks down.
Resumo:
In response to nuisance growths of algae and vascular plants, such as dioecious hydrilla ( Hydrilla verticillata L.f. Royle), copper formulations have been applied in lakes and reservoirs for a number of years. Concerns have arisen regarding the long-term consequences of copper applications and those concerns have appropriately focused on sediment residues. In this study, we evaluated the toxicity of sediments from treated (for a decade) and untreated areas in Lake Murray, South Carolina and estimated the capacity of those sediments to bind additional copper. Two sentinel aquatic invertebrates, Hyalella azteca Saussure and Ceriodaphnia dubia Richard, were used to measure residual toxicity of treated and untreated sediments from the field and after laboratory amendments. (PDF has 5 pages.)