979 resultados para controlling mass fuzzy
Resumo:
Creeping flow hydrodynamics combined with diffusion boundary layer equation are solved in conjunction with free-surface cell model to obtain a solution of the problem of convective transfer with surface reaction for flow parallel to an array of cylindrical pellets at high Peclet numbers and under fast and intermediate kinetics regimes. Expressions are derived for surface concentration, boundary layer thickness, mass flux and Sherwood number in terms of Damkoehler number, Peclet number and void fraction of the array. The theoretical results are evaluated numerically.
Resumo:
Uncertainty plays an important role in water quality management problems. The major sources of uncertainty in a water quality management problem are the random nature of hydrologic variables and imprecision (fuzziness) associated with goals of the dischargers and pollution control agencies (PCA). Many Waste Load Allocation (WLA)problems are solved by considering these two sources of uncertainty. Apart from randomness and fuzziness, missing data in the time series of a hydrologic variable may result in additional uncertainty due to partial ignorance. These uncertainties render the input parameters as imprecise parameters in water quality decision making. In this paper an Imprecise Fuzzy Waste Load Allocation Model (IFWLAM) is developed for water quality management of a river system subject to uncertainty arising from partial ignorance. In a WLA problem, both randomness and imprecision can be addressed simultaneously by fuzzy risk of low water quality. A methodology is developed for the computation of imprecise fuzzy risk of low water quality, when the parameters are characterized by uncertainty due to partial ignorance. A Monte-Carlo simulation is performed to evaluate the imprecise fuzzy risk of low water quality by considering the input variables as imprecise. Fuzzy multiobjective optimization is used to formulate the multiobjective model. The model developed is based on a fuzzy multiobjective optimization problem with max-min as the operator. This usually does not result in a unique solution but gives multiple solutions. Two optimization models are developed to capture all the decision alternatives or multiple solutions. The objective of the two optimization models is to obtain a range of fractional removal levels for the dischargers, such that the resultant fuzzy risk will be within acceptable limits. Specification of a range for fractional removal levels enhances flexibility in decision making. The methodology is demonstrated with a case study of the Tunga-Bhadra river system in India.
Resumo:
Airport runway pavement always subjected to huge impact loading due to the hard landing of aircraft on the pavement surface. Therefore runway pavements should have sufficient impact resistance capability to avoid damage causing by hard impact like surface deflection in downward or penetration since the repair works is cumbersome within the operating condition of airport and also increases the service life cost of the pavement structure. Several research works have been carried out on airport runway pavement to measure the present condition of pavement and also to predict future performance of it. However, most of the works are confined by pavement response under moving aircraft loading. Nevertheless, no comprehensive research work is yet conducted to identify the controlling factors which might have significant effect in changing the common pavements damage like surface penetration depth under impact of aircraft. Therefore, a 3D FE study is conducted to determine some effective factors in controlling the top surface penetration depth of runway pavement. Among the exterior factors, mass of the impactor, velocity of the impactor, impact angle and boundary conditions are selected and as interior factors, thickness of the runway pavement, compressive strength and density of materials used in the runway pavement are selected.
Resumo:
The paper studies the influence of vectored suction or injection on the flow and heat transfer at the stagnation point of a two-dimensional body (a cylinder) and an axisymmetric body (a sphere) with allowance for the effects of variable gas properties. The analysis is based on the boundary-layer equations in dimensionless form for the steady compressible fluid with variable properties in the stagnation region of a two-dimensional or an axisymmetric body with tangential and normal surface mass transfer under similarity requirements. It is shown that the variation of the density-viscosity product across the boundary layer has a strong effect on the skin friction and heat transfer. This gives rise to a point of inflection which can be removed by suction and by increasing the wall temperature. The skin friction and heat transfer are significantly affected by the pressure gradient parameter.
Resumo:
Abstract is not available.
Resumo:
Of the many factors that govern the settling phenomenon, the flow velocity in the settling tanks can be controlled favorably by fixing suitably designed weirs at the outlets of the tanks. The velocity at the bottom should not dislodge the particles that have already settled. These requirements might be met with by velocities which are controlled to be constant with respect to the depth of flow, or velocities which reduce linearly with increasing depth or velocities that vary inversely with the depth. To achieve these types of velocity control, new proportional weirs have been designed. Very near to the outlet of the tank, over a small length, the flow was found to be turbulent and noncompliant with the expected type of velocity control. This small length of the disturbance may be provided over and above the theoretical settling length of the tank, for efficient sedimentation.
Resumo:
This paper is focused on the study of a vibrating system forced by a rotating unbalance and coupled to a tuned mass damper (TMD). The analysis of the dynamic response of the entire system is used to define the parameters of such device in order to achieve optimal damping properties. The inertial forcing due to the rotating unbalance depends quadratically on the forcing frequency and it leads to optimal tuning parameters that differ from classical values obtained for pure harmonic forcing. Analytical results demonstrate that frequency and damping ratios, as a function of the mass parameter, should be higher than classical optimal parameters. The analytical study is carried out for the undamped primary system, and numerically investigated for the damped primary system. We show that, for practical applications, proper TMD tuning allows to achieve a reduction in the steady-state response of about 20% with respect to the response achieved with a classically tuned damper. Copyright © 2015 by ASME.
Resumo:
The effect of vectored mass transfer on the flow and heat transfer of the steady laminar incompressible nonsimilar boundary layer with viscous dissipation for two-dimensional and axisymmetric porous bodies with pressure gradient has been studied. The partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme. The computations have been carried out for a cylinder and a sphere. The skin friction is strongly influenced by the vectored mass transfer, and the heat transfer both by the vectored mass transfer and dissipation parameter. It is observed that the vectored suction tends to delay the separation whereas the effect of the vectored injection is just the reverse. Our results agree with those of the local nonsimilarity, difference-differential and asymptotic methods but not with those of the local similarity method.
Resumo:
Tooth development is regulated by sequential and reciprocal interactions between epithelium and mesenchyme. The molecular mechanisms underlying this regulation are conserved and most of the participating molecules belong to several signalling families. Research focusing on mouse teeth has uncovered many aspects of tooth development, including molecular and evolutionary specifi cs, and in addition offered a valuable system to analyse the regulation of epithelial stem cells. In mice the spatial and temporal regulation of cell differentiation and the mechanisms of patterning during development can be analysed both in vivo and in vitro. Follistatin (Fst), a negative regulator of TGFβ superfamily signalling, is an important inhibitor during embryonic development. We showed the necessity of modulation of TGFβ signalling by Fst in three different regulatory steps during tooth development. First we showed that tinkering with the level of TGFβ signalling by Fst may cause variation in the molar cusp patterning and crown morphogenesis. Second, our results indicated that in the continuously growing mouse incisors asymmetric expression of Fst is responsible for the labial-lingual patterning of ameloblast differentiation and enamel formation. Two TGFβ superfamily signals, BMP and Activin, are required for proper ameloblast differentiation and Fst modulates their effects. Third, we identifi ed a complex signalling network regulating the maintenance and proliferation of epithelial stem cells in the incisor, and showed that Fst is an essential modulator of this regulation. FGF3 in cooperation with FGF10 stimulates proliferation of epithelial stem cells and transit amplifying cells in the labial cervical loop. BMP4 represses Fgf3 expression whereas Activin inhibits the repressive effect of BMP4 on the labial side. Thus, Fst inhibits Activin rather than BMP4 in the cervical loop area and limits the proliferation of lingual epithelium, thereby causing the asymmetric maintenance and proliferation of epithelial stem cells. In addition, we detected Lgr5, a Wnt target gene and an epithelial stem cell marker in the intestine, in the putative epithelial stem cells of the incisor, suggesting that Lgr5 is a marker of incisor stem cells but is not regulated by Wnt/β-catenin signalling in the incisor. Thus the epithelial stem cells in the incisor may not be directly regulated by Wnt/β-catenin signalling. In conclusion, we showed in the mouse incisors that modulating the balance between inductive and inhibitory signals constitutes a key mechanism regulating the epithelial stem cells and ameloblast differentiation. Furthermore, we found additional support for the location of the putative epithelial stem cells and for the stemness of these cells. In the mouse molar we showed the necessity of fi ne-tuning the signalling in the regulation of the crown morphogenesis, and that altering the levels of an inhibitor can cause variation in the crown patterning.
Resumo:
Context: High bone mass (HBM), detected in 0.2% of dual-energy x-ray absorptiometry (DXA) scans, is characterized by raised body mass index, the basis for which is unclear. Objective: To investigate why body mass index is elevated in individuals with HBM, we characterized body composition and examined whether differences could be explained by bone phenotypes, eg, bone mass and/or bone turnover. Design, Setting, and Participants: We conducted a case-control study of 153 cases with unexplained HBM recruited from 4 UK centers by screening 219 088 DXA scans. Atotal of 138 first-degree relatives (of whom 51 had HBM) and 39 spouses were also recruited. Unaffected individuals served as controls. Main Outcome Measures: We measured fat mass, by DXA, and bone turnover markers. Results: Amongwomen, fat mass was inversely related to age in controls (P<.01), but not in HBM cases (P<.96) in whom mean fat mass was 8.9 [95% CI 4.7, 13.0] kg higher compared with controls (fully adjusted mean difference, P<.001). Increased fat mass in male HBM cases was less marked (gender interaction P = .03). Compared with controls, lean mass was also increased in female HBM cases (by 3.3 [1.2, 5.4] kg; P<.002); however, lean mass increases wereless marked than fat mass increases, resulting in 4.5% lower percentage lean mass in HBM cases (P<.001). Osteocalcin was also lower in female HBM cases compared with controls (by 2.8 [0.1, 5.5]μg/L; P = .04). Differences in fat mass were fully attenuated after hip bone mineral density (BMD) adjustment (P = .52) but unchanged after adjustment for bone turnover (P < .001), whereas the greater hip BMD in female HBM cases was minimally attenuated by fat mass adjustment (P<.001). Conclusions: HBM is characterized by a marked increase in fat mass in females, statistically explained by their greater BMD, but not by markers of bone turnover. Copyright © 2013 by The Endocrine Society.
Resumo:
CONTEXT: The role and importance of circulating sclerostin is poorly understood. High bone mass (HBM) caused by activating LRP5 mutations has been reported to be associated with increased plasma sclerostin concentrations; whether the same applies to HBM due to other causes is unknown. OBJECTIVE: Our objective was to determine circulating sclerostin concentrations in HBM. DESIGN AND PARTICIPANTS: In this case-control study, 406 HBM index cases were identified by screening dual-energy x-ray absorptiometry (DXA) databases from 4 United Kingdom centers (n = 219 088), excluding significant osteoarthritis/artifact. Controls comprised unaffected relatives and spouses. MAIN MEASURES: Plasma sclerostin; lumbar spine L1, total hip, and total body DXA; and radial and tibial peripheral quantitative computed tomography (subgroup only) were evaluated. RESULTS: Sclerostin concentrations were significantly higher in both LRP5 HBM and non-LRP5 HBM cases compared with controls: mean (SD) 130.1 (61.7) and 88.0 (39.3) vs 66.4 (32.3) pmol/L (both P < .001, which persisted after adjustment for a priori confounders). In combined adjusted analyses of cases and controls, sclerostin concentrations were positively related to all bone parameters found to be increased in HBM cases (ie, L1, total hip, and total body DXA bone mineral density and radial/tibial cortical area, cortical bone mineral density, and trabecular density). Although these relationships were broadly equivalent in HBM cases and controls, there was some evidence that associations between sclerostin and trabecular phenotypes were stronger in HBM cases, particularly for radial trabecular density (interaction P < .01). CONCLUSIONS: Circulating plasma sclerostin concentrations are increased in both LRP5 and non-LRP5 HBM compared with controls. In addition to the general positive relationship between sclerostin and DXA/peripheral quantitative computed tomography parameters, genetic factors predisposing to HBM may contribute to increased sclerostin levels.