945 resultados para continuumreaction-diffusion equations, mathematical biology, finite volumemethod, advection-dominated, partial differential equation, numerical simulation, diabetes
Resumo:
The problem of existence and uniqueness of polynomial solutions of the Lamé differential equation A(x)y″ + 2B(x)y′ + C(x)y = 0, where A(x),B(x) and C(x) are polynomials of degree p + 1,p and p - 1, is under discussion. We concentrate on the case when A(x) has only real zeros aj and, in contrast to a classical result of Heine and Stieltjes which concerns the case of positive coefficients rj in the partial fraction decomposition B(x)/A(x) = ∑j p=0 rj/(x - aj), we allow the presence of both positive and negative coefficients rj. The corresponding electrostatic interpretation of the zeros of the solution y(x) as points of equilibrium in an electrostatic field generated by charges rj at aj is given. As an application we prove that the zeros of the Gegenbauer-Laurent polynomials are the points of unique equilibrium in a field generated by two positive and two negative charges. © 2000 American Mathematical Society.
Resumo:
In this work, the analysis of electroosmotic pumping mechanisms in microchannels is performed through the solution of Poisson-Boltzmann and Navier Stokes equations by the Finite Element Method. This approach is combined with a Newton-Raphson iterative scheme, allowing a full treatment of the non-linear Poisson-Boltzmann source term which is normally approximated by linearizations in other methods.
Resumo:
In this work simulations of incompressible fluid flows have been done by a Least Squares Finite Element Method (LSFEM) using velocity-pressure-vorticity and velocity-pressure-stress formulations, named u-p-ω) and u-p-τ formulations respectively. These formulations are preferred because the resulting equations are partial differential equations of first order, which is convenient for implementation by LSFEM. The main purposes of this work are the numerical computation of laminar, transitional and turbulent fluid flows through the application of large eddy simulation (LES) methodology using the LSFEM. The Navier-Stokes equations in u-p-ω and u-p-τ formulations are filtered and the eddy viscosity model of Smagorinsky is used for modeling the sub-grid-scale stresses. Some benchmark problems are solved for validate the numerical code and the preliminary results are presented and compared with available results from the literature. Copyright © 2005 by ABCM.
Alternate treatments of jacobian singularities in polar coordinates within finite-difference schemes
Resumo:
Jacobian singularities of differential operators in curvilinear coordinates occur when the Jacobian determinant of the curvilinear-to-Cartesian mapping vanishes, thus leading to unbounded coefficients in partial differential equations. Within a finite-difference scheme, we treat the singularity at the pole of polar coordinates by setting up complementary equations. Such equations are obtained by either integral or smoothness conditions. They are assessed by application to analytically solvable steady-state heat-conduction problems.
Resumo:
In this work we study the periodic solutions, their stability and bifurcation for the class of Duffing differential equation mathematical equation represented where C > 0, ε > 0 and Λ are real parameter, A(t), b(t) and h(t) are continuous T periodic functions and ε is sufficiently small. Our results are proved using the averaging method of first order.
Resumo:
We construct exact solutions for a system of two coupled nonlinear partial differential equations describing the spatio-temporal dynamics of a predator-prey system where the prey per capita growth rate is subject to the Allee effect. Using the G'/G expansion method, we derive exact solutions to this model for two different wave speeds. For each wave velocity we report three different forms of solutions. We also discuss the biological relevance of the solutions obtained. © 2012 Elsevier B.V.
Resumo:
How individual-level movement decisions in response to habitat edges influence population-level patterns of persistence and spread of a species is a major challenge in spatial ecology and conservation biology. Here, we integrate novel insights into edge behavior, based on habitat preference and movement rates, into spatially explicit growth-dispersal models. We demonstrate how crucial ecological quantities (e.g., minimal patch size, spread rate) depend critically on these individual-level decisions. In particular, we find that including edge behavior properly in these models gives qualitatively different and intuitively more reasonable results than those of some previous studies that did not consider this level of detail. Our results highlight the importance of new empirical work on individual movement response to habitat edges. © 2013 by The University of Chicago.
Resumo:
We consider a family of two-dimensional nonlinear area-preserving mappings that generalize the Chirikov standard map and model a variety of periodically forced systems. The action variable diffuses in increments whose phase is controlled by a negative power of the action and hence effectively uncorrelated for small actions, leading to a chaotic sea in phase space. For larger values of the action the phase space is mixed and contains a family of elliptic islands centered on periodic orbits and invariant Kolmogorov-Arnold-Moser (KAM) curves. The transport of particles along the phase space is considered by starting an ensemble of particles with a very low action and letting them evolve in the phase until they reach a certain height h. For chaotic orbits below the periodic islands, the survival probability for the particles to reach h is characterized by an exponential function, well modeled by the solution of the diffusion equation. On the other hand, when h reaches the position of periodic islands, the diffusion slows markedly. We show that the diffusion coefficient is scaling invariant with respect to the control parameter of the mapping when h reaches the position of the lowest KAM island. © 2013 American Physical Society.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Matemática Universitária - IGCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Pós-graduação em Física - IFT
Resumo:
A simulação numérica do escoamento de ar em ambientes internos é na atualidade o método mais apropriado para análise de conforto térmico em ambientes internos. O escoamento de ar nesses ambientes configura-se como um escoamento complexo, pois, em regra geral, é uma combinação de escoamentos cisalhantes livres (jatos) e cisalhantes de parede, além disso, esses escoamentos são governados por forças de inércia e forças de empuxo, caracterizando-o como de convecção mista. A combinação desses mecanismos cria um escoamento com características complexas, como zonas de recirculação, vórtices, descolamento e recolamento de camada-limite dentre outras. Portanto, a precisão da solução estará diretamente ligada, principalmente, na habilidade do modelo de turbulência adotado de reproduzir as características turbulentas do escoamento de ar e da transferência térmica. O objetivo principal do presente trabalho foi a simulação computacional do ambiente térmico interno do galpão que abriga os geradores e motores Wärtzilä da Usina Termelétrica Santana no estado do Amapá. A formulação matemática baseada na solução das equações gerais de conservação inclui uma análise dos principais modelos de turbulência aplicados ao escoamento de ar em ambientes internos, assim como os processos de transferência de calor associados. Na modelagem numérica o método de volumes finitos é usado na discretização das equações de conservação, através do código comercial Fluent-Airpak, que foi usado nas simulações computacionais para a análise dos campos de velocidade e temperatura do ar. A utilização correta do programa computacional foi testada e validada para o problema através da simulação precisa de casos retirados da literatura. Os resultados numéricos foram comparados a dados obtidos de medições experimentais realizados no galpão e apresentou boa concordância, considerando a complexidade do problema simulado, o objetivo da simulação em face da diminuição da temperatura no interior do galpão e, também, em função das limitações encontradas quando da tomada das medições experimentais. Além disso, foram feitas simulações de estratégias de melhoria do ambiente térmico da Usina, baseadas na realidade levantada e nos resultados da simulação numérica. Finalmente, foram realizadas simulações do protótipo de solução proposto para a diminuição da temperatura interna do galpão o que possibilitará um aumento, na faixa de 20 a 30%, do tempo de permanência no interior do galpão.