992 resultados para completely monotonic function
Resumo:
We report the study of complex and unexpected dependencies of nanocrystal size as well as nanocrystalsize distribution on various reaction parameters in the synthesis of ZnO nanocrystals using poly(vinyl pyrollidone) (PVP) as a capping agent. This method establishes a qualitatively different growth mechanism to the anticipated Ostwald ripening behavior. The study of size-distribution kinetics and an understanding of the observed non-monotonic behaviors provides a route to rational synthesis. We used a simple, but accurate, approach to estimate the size-distribution function of nanocrystals from the UV-absorption spectrum. Our results demonstrate the accuracy and generality of this approach, and we also illustrate its application to various semiconducting nanocrystals, such as ZnO, ZnS, and CdSe, over a wide size range (1.8-5.3 nm).
Resumo:
Estrogens the female sex hormones have numerous biological actions. Estradiol is the most abundant estrogen in women before menopause. It influences the development, maturation and function of the female reproductive tract. It also plays a role in mammary cancer. Accordingly determinations of estradiol level in body fluids assist in the evaluation of ovarian function and diagnosis for malignancies. Estriol is the primary estrogen in pregnant women and secreted from the fetoplacental unit. Measurement of estriol in maternal body fluids is the basis of fetoplacental monitoring test. Concentration of estrogens in body fluids is determined by immunoassay. Accuracy of this measurement depends on the availability of a specific antibody. As estrogens are not antigenic, their derivatives (haptens) are coupled with a carrier and this hapten-protein conjugate is used to generate antibodies. Specificity of the generated antibody largely depends on the structure of hapten. Therefore the synthesis of a hapten with a right structure is crucial for the accurate measurement of a steroid. We have synthesised new haptens for estradiol and estriol by adding an alkyl or alkoxy side chain at the C-7 of estrane skeleton. The side chains carry a terminal amino group, which can be used for conjugation with a carrier molecule. Estrogens and their biosynthetic precursor androgens both exist as fatty acid esters. They are known to act as hormone storage but their physiological role is not completely known yet. Our collaborator is studying their effect in cardiovascular diseases. We synthesised fatty acid ester derivatives of several steroids in high yield by a very rapid procedure (in 1 min) under microwave irradiation in an ionic liquid (IL). An expedient regioselective hydrolysis at C-3 of estradiol diesters is also reported. 8-Isoestrogens are compounds of pharmaceutical interests, their synthesis, structure, conformation and biological activity studies are ongoing. 7-Hydroxy-8-isoestradiol and 7-alkyl ether of it were synthesised as well. During this study we have developed a selective O-debenzylation method. A mild route for selective removal of benzylic protection on phenol in presence of benzyl protected alcohol was explored.
Resumo:
A microscopic expression for the frequency and wave vector dependent dielectric constant of a dense dipolar liquid is derived starting from the linear response theory. The new expression properly takes into account the effects of the translational modes in the polarization relaxation. The longitudinal and the transverse components of the dielectric constant show vastly different behavior at the intermediate values of the wave vector k. We find that the microscopic structure of the dense liquid plays an important role at intermediate wave vectors. The continuum model description of the dielectric constant, although appropriate at very small values of wave vector, breaks down completely at the intermediate values of k. Numerical results for the longitudinal and the transverse dielectric constants are obtained by using the direct correlation function from the mean‐spherical approximation for dipolar hard spheres. We show that our results are consistent with all the limiting expressions known for the dielectric function of matter.
Resumo:
Sydämen vajaatoiminta on erilaisista sydän- ja verisuonisairauksista aiheutuva monimuotoinen oireyhtymä, johon sairastuneiden ja kuolleiden potilaiden määrä on yhä suuri. Sen patofysiologiaan voi kuulua muun muassa sympaattisen hermoston ja reniini-angiotensiini-aldosteroni–järjestelmän aktiivisuutta, huonosti supistuva vasen kammio, sydämen uudelleenmuokkautumista, muutoksia [Ca2+]i:n säätelyssä, kardiomyosyyttien apoptoosia sekä systeeminen tulehdustila. Johonkin osaan sairauden patofysiologiasta eivät nykyiset lääkehoidot riittävästi vaikuta. Klassiset inotroopit lisäävät sydämen supistusvireyttä kasvattamalla solunsisäistä Ca2+-pitoisuutta, mutta ne lisäävät rytmihäiriöriskiä, sydämen hapenkulutusta sekä heikentävät ennustetta. Levosimendaani, kalsiumherkistäjä, lisää sydämen supistusvoimaa [Ca2+]i:ta kohottamatta herkistämällä sydänlihaksen kalsiumin vaikutuksille. Lisäksi levosimendaani avaa sarkolemmaalisia ja mitokondriaalisia K+-kanavia, jotka välittävät vasodilataatiota ja kardioprotektiota. Suurilla annoksilla levosimendaani on selektiivinen PDE3-estäjä. Levosimendaania suositellaan äkillisesti pahentuneen sydämen vajaatoiminnan hoitoon, mutta muitakin lupaavia indikaatioita sille on keksitty. Esimerkiksi kroonisesti annosteltu oraalinen levosimendaani on suojannut kardiovaskulaarijärjestelmää ja parantanut selviytymistä in vivo. Erikoistyössä selvitettiin kroonisesti annostellun oraalisen levosimendaanin, valsartaanin ja näiden kombinaatioterapian vaikutuksia selviytymiseen, verenpaineeseen sekä sydämen hypertrofioitumiseen Dahlin suolaherkillä (Dahl/Rapp) rotilla. Levosimendaanin suojavaikutus ilmeni vähäisempänä kuolleisuutena, mutta ero ei ollut tilastollisesti merkitsevä kontrolliryhmään nähden. Kombinaatioterapia suojasi rottia kardiovaskulaarikuolleisuudelta ja vähensi todennäköisesti verenpaineesta riippuvaisesti sydämen hypertofioitumista niin sydän/kehonpaino–suhteen kuin ultraäänitutkimuksenkin perusteella arvioituna paremmin kuin kumpikaan lääke monoterapiana. Lääkekombinaatio alensi additiivisesti hypertensiota kaikissa mittauspisteissä. Sydämen systolista toimintaa levosimendaani kohensi vain vähäisesti. Dahl/Rapp-rotille kehittyikin pääosin hypertension indusoimaa diastolista sydämen vajaatoimintaa kohonneen IVRT-arvon perusteella. Levosimendaani sekä monoterapiana että kombinaatioterapiana valsartaanin kanssa vähensi sydämen diastolista vajaatoimintaa.
Resumo:
Tämän tutkimuksen tarkoitus oli tutkia T-tyypin kalsiumkanavan toimintaa ja sen mahdollista roolia neuronaalisten kantasolujen migraatiossa. T-tyypin kalsiumkanavan tehtävän kehittyneissä aivoissa tiedetään olevan elektroenkefalografisten oskillaatioiden tuottaminen. Nämä taas ovat eräiden fysiologisten ja patofysiologisten tapahtumien säätelyssä avainasemassa. Tällaisia tapahtumia ovat uni, muisti, oppiminen ja epileptiset poissaolokohtaukset. Näiden lisäksi T-tyypin kalsiumkanavalla on myös periferaalisia vaikutuksia, mutta tämä tutkielma keskittyy sen neuronaalisiin toimintoihin. Tämän matalan jännitteen säätelemän kanavan toiminta neurogeneesin aikana on vähemmän tutkittua ja tunnettua kuin sen vaikutukset kehittyneissä aivoissa. T-tyypin kalsiumkanavan tiedetään edistävän kantasolujen proliferaatiota ja erilaistumista neurogeneesiksen aikana, mutta vaikutukset niiden migraatioon ovat vähemmän tunnetut. Tämä tutkimus näyttää T-tyypin kalsiumkanavan todennäköisesti osallistuvan neuronaaliseen migraatioon hiiren alkion subventrikkeli alueelta eristetyillä kanta- tai progeniittorisoluilla tehdyissä kokeissa. Selektiiviset T-tyypin kalsiumkanavan antagonistit, etosuksimidi, nikkeli ja skorpionitoksiini, kurtoxin hidastivat migraatiota erilaistuvissa progeniittorisoluissa. Tämä tutkimus koostuu kirjallisuuskatsauksesta ja kokeellisesta osasta. Tämän tutkimuksen toinen tarkoitus oli esitellä vaihtoehtoinen lähestymistapa invasiiviselle kantasoluterapialle, joka vaatii kantasolujen viljelyä ja siirtämistä ihmiseen. Tämä toinen tapa on endogeenisten kantasolujen eiinvasiivinen stimulointi, jolla ne saadaan migratoitumaan kohdekudokseen, erilaistumaan siellä ja tehtävänsä suoritettuaan lopettamaan jakaantumisen. Non-invasiivinen kantasoluterapia on vasta tiensä alussa, ja tarvitsee farmakologista osaamista kehittyäkseen. Joitain onnistuneita ei-invasiivisia hoitoja on jo tehty selkärangan vaurioiden korjaamisessa. Vastaavanlaisia menetelmiä voitaisiin käyttää myös keskushermoston vaurioiden ja neurodegeneratiivisten sairauksien hoidossa. Näiden menetelmien kehittäminen vaatii endogeenisten kantasoluja inhiboivien ja indusoivien mekanismien tuntemista. Yksi tärkeä kantasolujen erilaistumista stimuloiva tekijä on kalsiumioni. Jänniteherkät kalsiumkanavat osallistuvat kaikkiin neurogeneesiksen eri vaiheisiin. T-tyypin kalsiumkanava, joka ekspressoituu suuressa määrin keskushermoston kehityksen alkuvaiheessa ja vähenee neuronaalisen kehityksen edetessä, saattaa olla oleellisessa asemassa progeniittorisolujen ohjaamisessa.
Resumo:
2,4-Dichlorophenol hydroxylase, a flavoprotein monooxygenase from Pseudomonas cepacia grown on 2,4-dichlorophenoxyacetic acid (2,4-D) as the sole source of carbon, was purified to homogeneity by a single-step affinity chromatography on 2,4-DCP-Sepharose CL-4B. The enzyme was eluted from the affinity matrix with the substrate 2,4-dichlorophenol. The enzyme has a molecular weight of 275,000 consisting of four identical subunits of molecular weight 69,000 and requires exogenous addition of FAD for its complete catalytic activity. The enzyme required an external electron donor NADPH for hydroxylation of 2,4-dichlorophenol to 3,5-dicholorocatechol. NADPH was preferred over NADH. The enzyme had Km value of 14 μImage for 2,4-dichlorophenol, and 100 μImage for NADPH. The enzyme activity was significantly inhibited by heavy metal ions like Hg2+ and Zn2+ and showed marked inhibition with thiol reagents. Trichlorophenols inhibited the enzyme competitively. The hydroxylase activity decreased as a function of increasing concentrations of Cibacron blue and Procion red dyes. The apoenzyme prepared showed complete loss of FAD when monitored spectrophotometrically and had no enzymatic activity. The inactive apoenzyme was reconstituted with exogenous FAD which completely restored the enzyme activity.
Resumo:
The contents of fibroin H RNA as a function of development have been quantitated in the posterior silk glands of Bombyx mori larvae on different days of 4th and 5th instars. The fibroin RNA levels increased during the feeding stages of larvae and the RNA got completely degraded during the interim moult. The patterns of accumulation of fibroin RNA were similar in both the instars. Although there was considerable increase in the fibroin RNA content during the 5th larval instar, the relative abundance of fibroin RNA in the total RNA was fairly constant during the 4th and 5th instars. The increased content of fibroin RNA in 5th instar was the consequence of an overall increase in transcription accompanying the development progress, rather than specific increase only in fibroin transcription. The contents of fibroin protein in the 4th and 5th instars of development have also been quantitated making use of a sensitive radioimmune assay with a purified, antifibroin antibody. There were substantial differences between 4th and 5th instars in the absolute fibroin contents as well as the relative proportion of fibroin in the total proteins. These results implied that although the fibroin gene was transcribed at the same efficiency during the 4th and 5th instars, the translational efficiency was much lower during the 4th instar. The extent of polyadenylation of fibroin RNA was similar in both instars. However, there was a two-fold increase in the polysome association of fibroin RNA in the 5th instar. Over and above this, there was substantial increase during the 5th instar in the contents of those tRNAs. (e.g. Gly, Ala and Ser) which are abundantly represented in fibroin and therefore directly related to the expression of fibroin. The increased polysome association of fibroin mRNA and the adequate supply of cognate tRNAs in the 5th instar, together contributes to the translational regulation of fibroin in a developmental stage-specific manner. Based on these observations, we propose that translational regulation plays a major role in the development stage-specific synthesis of fibroin in Bombyx mori.
Resumo:
While the need for FSH in initiating spermatogenesis in the immature rat is well accepted, its requirement for maintenance of spermatogenesis in adulthood is questioned. In the current study, using gonadotropin antisera to neutralize specifically either endogenous FSH or LH, we have investigated the effect of either FSH or LH deprivation for a 10-day period on (i) testicular macromolecular synthesis in vitro, (ii) the activities of testicular germ cell specific LDH-X and hyaluronidase enzymes, and finally (iii) on the concentration of sulphated glycoprotein (SGP-2), one of the Sertoli cell marker proteins. Both immature (35-day-old) and adult (100-day-old) rats have been used in this study. Since LH deprivation leads to a near total blockade of testosterone production, the ability of exogenous testosterone supplementation to override the effects of LH deficiency has also been evaluated. Deprivation of either of the gonadotropins significantly affected in vitro RNA and protein synthesis by both testicular minces as well as single cell preparations. Fractionation of dispersed testicular cells preincubated with labelled precursors of RNA and protein on Percoll density gradient revealed that FSH deprivation affected specifically the rate of RNA and protein synthesis of germ cell and not Leydig cell fraction. LH but not FSH deprivation inhibited [3H]thymidine incorporation into DNA. The inhibitory effect of LH could mostly be overriden by testosterone supplementation. LDH-X and hyaluronidase activities of testicular homogenates of adult rats showed significant reduction (50%; P less than .05) following either FSH or LH deprivation. Again testosterone supplementation was able to reverse the LH inhibitory effect.
Resumo:
We have developed the technique of thermal fluctuation spectroscopy to measure the thermal fluctuations in a system. This technique is particularly useful to study the denaturation dynamics of biomolecules like DNA. Here we present a study of the thermal fluctuations during the thermal denaturation (or melting) of double-stranded DNA. We find that the thermal denaturation of heteropolymeric DNA is accompanied by large, non-Gaussian thermal fluctuations. The thermal fluctuations show a two-peak structure as a function of temperature. Calculations of enthalpy exchanged show that the first peak comes from the denaturation of AT rich regions and the second peak from denaturation of GC rich regions. The large fluctuations are almost absent in homopolymeric DNA. We suggest that bubble formation and cooperative opening and closing dynamics of basepairs causes the additional fluctuation at the first peak and a large cooperative transition from a partially molten DNA to a completely denatured state causes the additional fluctuation at the second peak.
Resumo:
Transcription factors play a key role in tumor development, in which dysfunction of genes regulating tissue growth and differentiation is a central phenomenon. The GATA family of transcription factors consists of six members that bind to a consensus DNA sequence (A/T)GATA(A/G) in gene promoters and enhancers. The two GATA factors expressed in the adrenal cortex are GATA-4 and GATA-6. In both mice and humans, GATA-4 can be detected only during the fetal period, whereas GATA-6 expression is abundant both throughout development and in the adult. It is already established that GATA factors are important in both normal development and tumorigenesis of several endocrine organs, and expression of GATA-4 and GATA-6 is detected in adrenocortical tumors. The aim of this study was to elucidate the function of these factors in adrenocortical tumor growth. In embryonal development, the adrenocortical cells arise and differentiate from a common pool with gonadal steroidogenic cells, the urogenital ridge. As the adult adrenal cortex undergoes constant renewal, it is hypothesized that undifferentiated adrenocortical progenitor cells reside adjacent to the adrenal capsule and give rise to daughter cells that differentiate and migrate centripetally. A diverse array of hormones controls the differentiation, growth and survival of steroidogenic cells in the adrenal gland and the gonads. Factors such as luteinizing hormone and inhibins, traditionally associated with gonadal steroidogenic cells, can also influence the function of adrenocortical cells in physiological and pathophysiological states. Certain inbred strains of mice develop subcapsular adrenocortical tumors in response to gonadectomy. In this study, we found that these tumors express GATA-4, normally absent from the adult adrenal cortex, while GATA-6 expression is downregulated. Gonadal markers such as luteinizing hormone receptor, anti-Müllerian hormone and P450c17 are also expressed in the neoplastic cells, and the tumors produce gonadal hormones. The tumor cells have lost the expression of melanocortin-2 receptor and the CYP enzymes necessary for the synthesis of corticosterone and aldosterone. By way of xenograft studies utilizing NU/J nude mice, we confirmed that chronic gonadotropin elevation is sufficient to induce adrenocortical tumorigenesis in susceptible inbred strains. Collectively, these studies suggest that subcapsular adrenocortical progenitor cells can, under certain conditions, adopt a gonadal fate. We studied the molecular mechanisms involved in gene regulation in endocrine cells in order to elucidate the role of GATA factors in endocrine tissues. Ovarian granulosa cells express both GATA-4 and GATA-6, and the TGF-β signaling pathway is active in these cells. Inhibin-α is both a target gene for, and an atypical or antagonistic member of the TGF-β growth factor superfamily. In this study, we show that GATA-4 is required for TGF-β-mediated inhibin-α promoter activation in granulosa cells, and that GATA-4 physically interacts with Smad3, a TGF-β downstream protein. Apart from the regulation of steroidogenesis and other events in normal tissues, TGF-β signaling is implicated in tumors of multiple organs, including the adrenal cortex. Another signaling pathway found often to be aberrantly active in adrenocortical tumors is the Wnt pathway. As both of these pathways regulate the expression of inhibin-α, a transcriptional target for GATA-4 and GATA-6, we wanted to investigate whether GATA factors are associated with the components of these signaling cascades in human adrenocortical tumors. We found that the expression of Wnt co-receptors LRP5 and LRP6, Smad3, GATA-6 and SF-1 was diminished in adrenocortical carcinomas with poor outcome. All of these factors drive inhibin-α expression, and their expression in adrenocortical tumors correlated with that of inhibin-α. The results support a tumor suppressor role previously suggested for inhibin-α in the mouse adrenal cortex, and offer putative pathways associated with adrenocortical tumor aggressiveness. Unraveling the role of GATA factors and associated molecules in human and mouse adrenocortical tumors could ultimately contribute to the development of diagnostic tools and future therapies for these diseases.
Resumo:
Using path integrals, we derive an exact expression-valid at all times t-for the distribution P(Q,t) of the heat fluctuations Q of a Brownian particle trapped in a stationary harmonic well. We find that P(Q, t) can be expressed in terms of a modified Bessel function of zeroth order that in the limit t > infinity exactly recovers the heat distribution function obtained recently by Imparato et al. Phys. Rev. E 76, 050101(R) (2007)] from the approximate solution to a Fokker-Planck equation. This long-time result is in very good agreement with experimental measurements carried out by the same group on the heat effects produced by single micron-sized polystyrene beads in a stationary optical trap. An earlier exact calculation of the heat distribution function of a trapped particle moving at a constant speed v was carried out by van Zon and Cohen Phys. Rev. E 69, 056121 (2004)]; however, this calculation does not provide an expression for P(Q, t) itself, but only its Fourier transform (which cannot be analytically inverted), nor can it be used to obtain P(Q, t) for the case v=0.
Resumo:
X-ray diffraction studies on single crystals of a few viruses have led to the elucidation of their three dimensional structure at near atomic resolution. Both the tertiary structure of the coat protein subunit and the quaternary morganization of the icosahedral capsid in these viruses are remarkably similar. These studies have led to a critical re-examination of the structural principles in the architecture of isometric viruses and suggestions of alternative mechanisms of assembly. Apart from their role in the assembly of the virus particle, the coat proteins of certian viruses have been shown to inhibit the replication of the cognate RNA leading to cross-protection. The coat protein amino acid sequence and the genomic sequence of several spherical plant RNA viruses have been determined in the last decade. Experimental data on the mechanisms of uncoating, gene expression and replication of several classes of viruses have also become available. The function of the non-structural proteins of some viruses have been determined. This rapid progress has provided a wealth of information on several key steps in the life cycle of RNA viruses. The function of the viral coat protein, capsid architecture, assembly and disassembly and replication of isometric RNA plant viruses are discussed in the light of this accumulated knowledge.
Resumo:
Fast excitatory transmission between neurons in the central nervous system is mainly mediated by L-glutamate acting on ligand gated (ionotropic) receptors. These are further categorized according to their pharmacological properties to AMPA (2-amino-3-(5-methyl-3-oxo-1,2- oxazol-4-yl)propanoic acid), NMDA (N-Methyl-D-aspartic acid) and kainate (KAR) subclasses. In the rat and the mouse hippocampus, development of glutamatergic transmission is most dynamic during the first postnatal weeks. This coincides with the declining developmental expression of the GluK1 subunit-containing KARs. However, the function of KARs during early development of the brain is poorly understood. The present study reveals novel types of tonically active KARs (hereafter referred to as tKARs) which play a central role in functional development of the hippocampal CA3-CA1 network. The study shows for the first time how concomitant pre- and postsynaptic KAR function contributes to development of CA3-CA1 circuitry by regulating transmitter release and interneuron excitability. Moreover, the tKAR-dependent regulation of transmitter release provides a novel mechanism for silencing and unsilencing early synapses and thus shaping the early synaptic connectivity. The role of GluK1-containing KARs was studied in area CA3 of the neonatal hippocampus. The data demonstrate that presynaptic KARs in excitatory synapses to both pyramidal cells and interneurons are tonically activated by ambient glutamate and that they regulate glutamate release differentially, depending on target cell type. At synapses to pyramidal cells these tKARs inhibit glutamate release in a G-protein dependent manner but in contrast, at synapses to interneurons, tKARs facilitate glutamate release. On the network level these mechanisms act together upregulating activity of GABAergic microcircuits and promoting endogenous hippocampal network oscillations. By virtue of this, tKARs are likely to have an instrumental role in the functional development of the hippocampal circuitry. The next step was to investigate the role of GluK1 -containing receptors in the regulation of interneuron excitability. The spontaneous firing of interneurons in the CA3 stratum lucidum is markedly decreased during development. The shift involves tKARs that inhibit medium-duration afterhyperpolarization (mAHP) in these neurons during the first postnatal week. This promotes burst spiking of interneurons and thereby increases GABAergic activity in the network synergistically with the tKAR-mediated facilitation of their excitatory drive. During development the amplitude of evoked medium afterhyperpolarizing current (ImAHP) is dramatically increased due to decoupling tKAR activation and ImAHP modulation. These changes take place at the same time when the endogeneous network oscillations disappear. These tKAR-driven mechanisms in the CA3 area regulate both GABAergic and glutamatergic transmission and thus gate the feedforward excitatory drive to the area CA1. Here presynaptic tKARs to CA1 pyramidal cells suppress glutamate release and enable strong facilitation in response to high-frequency input. Therefore, CA1 synapses are finely tuned to high-frequency transmission; an activity pattern that is common in neonatal CA3-CA1 circuitry both in vivo and in vitro. The tKAR-regulated release probability acts as a novel presynaptic silencing mechanism that can be unsilenced in response to Hebbian activity. The present results shed new light on the mechanisms modulating the early network activity that paves the way for oscillations lying behind cognitive tasks such as learning and memory. Kainate receptor antagonists are already being developed for therapeutic use for instance against pain and migraine. Because of these modulatory actions, tKARs also represent an attractive candidate for therapeutic treatment of developmentally related complications such as learning disabilities.