956 resultados para coconut fiber
Resumo:
A theoretical study is given of viscoelastic microbuckling of fiber composites. The analysis is formulated in terms of general linear viscoelastic behavior within the kink band. Material outside the kink band is assumed to behave elastically. Two specific forms of linear viscoelastic behavior are considered: a standard linear viscoelastic model and a logarithmically creeping model. Results are provided as deformation versus time histories and failure life versus applied stress. Failure is due to either the attainment of a critical failure strain in the kink band or to the intervention of a different failure mechanism such as plastic microbuckling.
Resumo:
The usage of subcarrier multiplexing (SCM) techniques to allow link transmission in excess of the specified fiber bandwidth is described. A series of 200-Mbit/s channels with carrier frequencies of up to more than twenty times the 3-dB fiber bandwidth have been successfully used, the maximum being limited by the available electronics. To assess the transmission of the fiber, digitally modulated channels are placed on high frequency carrier signals and then used to modulate a vertical-cavity surface-emitting lasers (VCSEL).
10-Gbit/s transmission over 300-m standard multimode fiber using multilevel coding and 2-channel WDM
Resumo:
A combination of multilevel coding schemes and simple two-channel wavelength division multiplexing (WDM) at 1300 and 1550 nm was used to transmit an aggregate of 10 Gbit/s over 300 m of multimode fiber that is typical of that employed in current Local Area Networks (LANs). It was shown that this technique could be a simple solution for achieving 10 Gigabit ethernet links over installed multimode fiber building backbones.
Resumo:
The use of two different subcarriers at frequencies up to 5.5 GHz each transmitting 1 Gbit/s over 500 m of multimode fiber (MMF) is demonstrated. By transmitting the two subcarrier channels simultaneously alongside the baseband signal, an aggregate bit rate of 2.8 Gbit/s is possible.
Resumo:
An optical fiber strain sensing technique, based on Brillouin Optical Time Domain Reflectometry (BOTDR), was used to obtain the full deformation profile of a secant pile wall during construction of an adjacent basement in London. Details of the installation of sensors as well as data processing are described. By installing optical fiber down opposite sides of the pile, the distributed strain profiles obtained can be used to give both the axial and lateral movements along the pile. Measurements obtained from the BOTDR were found in good agreement with inclinometer data from the adjacent piles. The relative merits of the two different techniques are discussed. © 2007 ASCE.
Resumo:
The paper describes the use of optical fiber Brillouin Optical Time Domain Reflectometry (BOTDR) to monitor the strain distribution in an existing tunnel while a twin tunnel was bored at close-proximity. The twin circular bored tunnels between Serangoon and Bartley stations on the new Circle Line Stage 3 subway in Singapore were constructed at close-proximity to avoid underpinning the foundations of adjacent buildings. The minimum clear separation of the two tunnels is 2.3m (0.4 times the tunnel diameter). The Outer Tunnel was constructed first, followed by the Inner Tunnel, with the earth-pressure balance tunnel boring machines maintained at a minimum of 100m apart. In this trial application of BOTDR, the strain distribution along the Outer Tunnel was measured, in order to monitor its deformation due to the boring of the Inner Tunnel at close-proximity. The aim of the trial application was to determine the practicality of this monitoring method for future use in 'live' tunnels. This paper compares the measurements obtained from optical fiber BOTDR with conventional methods of tunnel monitoring and describes preliminary installation and workmanship guidelines derived from lessons learnt during this trial. © 2007 ASCE.
Resumo:
Cells communicate with their external environment via focal adhesions and generate activation signals that in turn trigger the activity of the intracellular contractile machinery. These signals can be triggered by mechanical loading that gives rise to a cooperative feedback loop among signaling, focal adhesion formation, and cytoskeletal contractility, which in turn equilibrates with the applied mechanical loads. We devise a signaling model that couples stress fiber contractility and mechano-sensitive focal adhesion models to complete this above mentioned feedback loop. The signaling model is based on a biochemical pathway where IP3 molecules are generated when focal adhesions grow. These IP3 molecules diffuse through the cytosol leading to the opening of ion channels that disgorge Ca2+ from the endoplasmic reticulum leading to the activation of the actin/myosin contractile machinery. A simple numerical example is presented where a one-dimensional cell adhered to a rigid substrate is pulled at one end, and the evolution of the stress fiber activation signal, stress fiber concentrations, and focal adhesion distributions are investigated. We demonstrate that while it is sufficient to approximate the activation signal as spatially uniform due to the rapid diffusion of the IP3 through the cytosol, the level of the activation signal is sensitive to the rate of application of the mechanical loads. This suggests that ad hoc signaling models may not be able to capture the mechanical response of cells to a wide range of mechanical loading events. © 2011 American Society of Mechanical Engineers.
Resumo:
Processing technique and physical characteristics of thermal insulation boards prepared from coconut pith using rubber latex as the binding agent are reported in this communication. In view of the easy processing, low cost and comparable physical properties with other insulating materials available indigenously, manufacture of these boards appears to be promising.
Resumo:
Biological investigations were carried out in Sapian Bay, Capiz from November 1975 to December 1976 with samplings conducted fortnightly. Histological studies on the gonad reveal a high percentage of ripe and spent females during the month of April and May, and ripe to near ripe during November to December. However, larval counts were highest on February 25, 1976 with 253 mytilid larvae per haul compared to 0-79 per haul during all other months. The high larval count was followed by the highest spat settlement during the next sampling period two weeks later, with the spat collector set in the water during the February 25 sampling. The four materials tested, blue polypropylene fiber rope, black polypropylene fiber, and coir rope, all had their highest spat counts during this period with an average of 471 spats per standard 10 cm rope piece. The range during the other time periods is 2-283 spats. Of the 4 materials tested, the black fibrillated polypropylene film had the highest larval counts in 15 out of a total of 25 sampling periods. The blue rope was the poorest spat collector. Coconut husk was tested later on and it proved to have a very high catchability, with spats completely enveloping the husk surface. Growth monitored from one cohort in Sapian Bay averaged 10 mm per month. 50-60 mm is considered marketable size. Trial growth experiments with transplanted mussels were also conducted at Igang Bay in Guimaras Island, Makato River in Aklan, and a milkfish pond in Leganes, Iloilo. Survival in Igang was less than 50% after the second week, and the condition of the surviving mussels can be described only as 'watery' with the mantle completely transparent. Mortality was minimal in Makato but the growth rate was only 30% that of Sapian Bay. The pond experiments were terminated due to severe crab predation.
Resumo:
We mode-lock a fiber oscillator with cavity length of ~1500m using nanotubes, achieving 1.55ps pulses with pulse energy up to 63nJ at 134 KHz repetition rate. © 2010 Optical Society of America.
Resumo:
A Graphene-based saturable absorber is fabricated using wet chemistry techniques. We use it to passively mode-lock an Erbium doped fiber laser. ~500fs pulses are produced at 1560nm with a 5.2nm spectrum bandwidth. © 2010 Optical Society of America.