998 resultados para chemical durability
Resumo:
There is an ongoing discussion about moving toward performance-based specifications for concrete pavements. This document seeks to move the discussion forward by outlining the needs and the challenges, and proposing some immediate actions. However, this approach may increase risk for all parties until performance requirements are agreed upon and, more importantly, how the requirements can be measured. A fundamental issue behind pavement construction activities is that the owner/designer needs to be assured that the concrete in place will survive for the intended period (assuming there are no changes in the environment or loading) and, therefore, that full payment should be made. At the same time, each party along the supply chain needs to be assured that the material being supplied to them is able to meet the required performance, as is the product/system they are delivering. The focus of this document is a discussion of the issues behind this need, and the technologies that are available, or still needed, to meet this need, particularly from the point of view of potential durability
Resumo:
About sixty small water bodies (coastal lagoons, marshes, salt pans, channels, springs, etc.) of the Spanish Mediterranean coast were sampled seasonally for one year (1979-1980), in order to study different aspects of their chemical composition. The concentrations of major ions (alkalinity, Cl-, Ca2+, Mg2+, Na+, and K+), nutrients (N.NO-3, N.NO2-, TRP and Si), oxygen and pH were determined for this purpose. The salt concentrations measured range between 0.4 and 361.3 g l-1. The samples have been divided into four classes of salinity (in g l-1): Cl, S < 5; C2, 5 40. Within these classes, the pattern of ionic dominance recorded is remarkably constant and similar to that found in most coastal lagoons (Cl- > So42- > Alk., for the anions, and Na+ > Mg2+ > Ca2+ > K+, for the cations), although other models occur especially in the first class. The dominance of Na+ and Cl-, as well as the molar ratios Mg2+/Ca2+ and Cl- / SO42- ,clearly increase from class Cl to class C4. The hyperhaline waters include different subtypes of the major brine type"c",, of EUGSTER & HARDIE (1978), the Na+ - (Mg2+) - Cl- - (SO42-) being the most frequent. Nutrient concentrations fall within a wide range (N.NO3 from 0.1 to 1100 mg-at 1-1; PRT from 0.01 to 23.56 mg-at l-1 and Si from 1.0 to 502.0 mg-at l-1). The oxygen values are very variable too, ranging between 0 and 14.4 ml l-1. Four different patterns of nutrient distribution have been distinguished based on the mean concentrations of N.NO3-, and TRP (mean values in mg-at l-1): A, N.NO3- < 10, TRP > l ; B, N.NO3- > 100, TRP < 1; C, 10 < N.NO3- < 100, TRP < 1; C, D, N.NO3- < 10, TRP < 1. As a rule, lagoons of low salinity (C1 and C2 classes) display the nutrient pattern C, and lagoons of high salinity (C3 and C4) show the nutrient pattern D. Model A only appears in waters of very low salinity, whereas model B does not seem to be related to salinity.
Resumo:
Sacoglossan sea slugs (Mollusca: Opisthobranchia) are one of the few groups of specialist herbivores in the marine environment. Sacoglossans feed suctorially on the cell sap of macroalgae, from which they 'steal' chloroplasts (kleptoplasty) and deterrent substances (kleptochemistry), retaining intracellularly both host plastids and chemicals. The ingested chloroplasts continue to photosynthesize for periods ranging from a few hours or days up to 3 months in some species. Shelled, more primitive sacoglossans feed only on the siphonalean green algal genus Caulerpa, and they do not have functional kleptoplasty. The diet of sacoglossans has radiated out from this ancestral food. Among the shell-less Plakobranchidae (=Elysiidae), the more primitive species feed on other siphonales (families Derbesiaceae, Caulerpaceae, Bryopsidaceae and Codiaceae) and fix carbon, while the more 'advanced' species within the Plakobranchidae and Limapontioidae have a more broad dietary range. Most of these 'advanced' species are unable to fix carbon because the chloroplasts of their food algae are mechanically disrupted during ingestion. Mesoherbivores are likely to be eaten if they live on palatable seaweeds, their cryptic coloration and form not always keeping them safe from predators. Sacoglossans prefer to live on and eat chemically defended seaweeds, and they use ingested algal chemicals as deterrents of potential predators. The most ancestral shelled sacoglossans (Oxynoidae) and some Plakobranchidae such as Elysia translucens, Thuridilla hopei and Bosellia mimetica have developed a diet-derived chemical defense mechanism. Oxynoids and Thuridilla hopei are able to biomodify the algal metabolites. However, the Plakobranchidae Elysia timida and E. viridis, together with Limapontioidea species, are characterized by their ability to de novo synthesize polypropionate metabolites. A whole analysis of kleptoplasty and chemical defenses in sacoglossans may offer a better understanding of the ecology and evolution of these specialized opisthobranchs. In this paper we summarize some of the latest findings, related mainly to Mediterranean species, and offer a plausible evolutionary scenario based on the biological and chemical trends we can distinguish in them.
Resumo:
In swarm robotics, communication among the robots is essential. Inspired by biological swarms using pheromones, we propose the use of chemical compounds to realize group foraging behavior in robot swarms. We designed a fully autonomous robot, and then created a swarm using ethanol as the trail pheromone allowing the robots to communicate with one another indirectly via pheromone trails. Our group recruitment and cooperative transport algorithms provide the robots with the required swarm behavior. We conducted both simulations and experiments with real robot swarms, and analyzed the data statistically to investigate any changes caused by pheromone communication in the performance of the swarm in solving foraging recruitment and cooperative transport tasks. The results show that the robots can communicate using pheromone trails, and that the improvement due to pheromone communication may be non-linear, depending on the size of the robot swarm.
Resumo:
Chemical sensing begins when peripheral receptor proteins recognise specific environmental stimuli and translate them into spatial and temporal patterns of sensory neuron activity. The chemosensory system of the fruit fly, Drosophila melanogaster, has become a dominant model to understand this process, through its accessibility to a powerful combination of molecular, genetic and electrophysiological analysis. Recent results have revealed many surprises in the biology of peripheral chemosensation in Drosophila, including novel structural and signalling properties of the insect odorant receptors (ORs), combinatorial mechanisms of chemical recognition by the gustatory receptors (GRs), and the implication of Transient Receptor Potential (TRP) ion channels as a novel class of chemosensory receptors.
Resumo:
Midazolam is a widely accepted probe for phenotyping cytochrome P4503A. A gas chromatography-mass spectrometry (GC-MS)-negative chemical ionization method is presented which allows measuring very low levels of midazolam (MID), 1-OH midazolam (1OHMID) and 4-OH midazolam (4OHMID), in plasma, after derivatization with the reagent N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide. The standard curves were linear over a working range of 20 pg/ml to 5 ng/ml for the three compounds, with the mean coefficients of correlation of the calibration curves (n = 6) being 0.999 for MID and 1OHMID, and 1.0 for 4OHMID. The mean recoveries measured at 100 pg/ml, 500 pg/ml, and 2 ng/ml, ranged from 76 to 87% for MID, from 76 to 99% for 1OHMID, from 68 to 84% for 4OHMID, and from 82 to 109% for N-ethyloxazepam (internal standard). Intra- (n = 7) and inter-day (n = 8) coefficients of variation determined at three concentrations ranged from 1 to 8% for MID, from 2 to 13% for 1OHMID and from 1 to 14% for 4OHMID. The percent theoretical concentrations (accuracy) were within +/-8% for MID and 1OHMID, within +/-9% for 4OHMID at 500 pg/ml and 2 ng/ml, and within +/-28% for 4OHMID at 100 pg/ml. The limits of quantitation were found to be 10 pg/ml for the three compounds. This method can be used for phenotyping cytochrome P4503A in humans following the administration of a very low oral dose of midazolam (75 microg), without central nervous system side-effects.
Resumo:
Concretes with service lives of less than 15 years and those with lives greater than 40 years were studied with petrographic microscope, scanning electron microscope, and electron microprobe to determine why these two groups of concrete exhibit such different degrees of durability under highway conditions. Coarse aggregate used in both types of concrete were from dolomite rock, but investigation revealed that dolomite aggregate in the two groups of concretes were much different in several respects. The poorly-performing aggregate is fine-grained, has numerous euhedral and subhedral dolomite rhombohedra, and has relatively high porosity. Aggregate from durable concrete is coarse-grained, with tightly interlocked crystal fabric, anhedral dolomite boundaries, and low porosity. Aggregate in short service life concrete was found to have undergone pervasive chemical reactions with the cement which produced reaction rims on the boundaries of coarse aggregate particles and in the cement region adjacent to aggregate boundaries. Textural and porosity differences are believed to be chiefly responsible for different service lives of the two groups of concrete. The basic reaction that has occurred in the short service life concretes between coarse aggregate and cement is an alkali-dolomite reaction. In the reaction dolomite from the aggregate reacts with hydroxide ions from the cement to free magnesium ions and carbonate ions, and the magnesium ions precipitate as brucite, Mg(OH)2. Simultaneously with this reaction, a second reaction occurs in which product carbonate ions react with portlandite from the cement to form calcite and hydroxide ions. Crystal growth pressures of newly formed brucite and calcite together with other processes, e.g. hydration state changes of magnesium chloride hydrates, lead to expansion of the concretes with resultant rapid deterioration. According to this model, magnesium from any source, either from reacting dolomite or from magnesium road deicers, has a major role in highway concrete deterioration. Consequently, magnesium deicers should be used with caution, and long-term testing of the effects of magnesium deicers on highway concrete should be implemented to determine their effects on durability.
Resumo:
A number of concrete admixtures are presently used in various concretes principally for water reduction, retardation, or air entrainment. Whereas the use of these admixtures in concrete placement is well documented, there is limited information showing their effects on durability and drying shrinkage. Since the durability and the shrinkage of concrete can have a pronounce effect on a structures longevity, wear characteristics, and reaction to loading, it is desirable to know the relative effects of different admixtures prior to concrete placement. The purpose of this study is to provide information which could be used to establish durability and shrinkage criterion for evaluating the admixtures currently in use and those whose use may be proposed.
Resumo:
Sludges resulting from wastewater treatment processes have a characteristically high water content, which complicates handling operations such as pumping, transport and disposal. To enhance the dewatering of secondary sludge, the effect of ultrasound waves, thermal treatment and chemical conditioning with NaOH have been studied. Two features of treated sludges were examined: their rheological behavior and their dewaterability. The rheological tests consisted of recording shear stress when the shear rate increases and decreases continuously and linearly with time, and when it increases and decreases in steps. Steady-state viscosity and thixotropy were obtained from the rheological tests, and both decreased significantly in all cases with increased treatment intensity. Centrifugation of ultrasonicated and thermally treated sludges allowed the total solid content to be increased by approximately 16.2% and 17.6%, respectively. These dewatered sludges had a lower viscosity and thixotropy than the untreated sludge. In contrast, alkali conditioning barely allowed the sludge to be dewatered by centrifugation, despite decreasing its viscosity and thixotropy.
Resumo:
This minireview is meant as an introduction to the following paper. To this end, it presents the general background against which the joint paper should be understood. The first objective of the present paper is thus to clarify some concepts and related terminology, drawing a clear distinction between i) atomic diversity (i.e., atomic-property space), ii) molecular or macromolecular diversity (i.e., molecular- or macromolecular-property spaces), and iii) chemical diversity (i.e., chemical-diversity space). The first refers to the various electronic states an atom can occupy. The second encompasses the conformational and property spaces of a given (macro)molecule. The third pertains to the diversity in structure and properties exhibited by a library or a supramolecular assembly of different chemical compounds. The ground is thus laid for the content of the joint paper, which pertains to case ii, to be placed in its broader chemodiversity context. The second objective of this paper is to point to the concepts of chemodiversity and biodiversity as forming a continuum. Chemodiversity is indeed the material substratum of organisms. In other words, chemodiversity is the material condition for life to emerge and exist. Increasing our knowledge of chemodiversity is thus a condition for a better understanding of life as a process.
Resumo:
We find that even very low Ni doping levels of high-quality Bi2Sr2Ca1Cu2O8 single crystals strongly affect the transition temperature T(c). We also observed that T(c) is not related to the total Ni concentration, but only to that of Ni engaged in NiO-type bonds. By controlling the temperature during crystal growth, one can modify the relative weight of Ni in NiO-type bonds with respect to other configurations-and therefore T(c).
Resumo:
BACKGROUND: Little is known about time trends, predictors, and consequences of changes made to antiretroviral therapy (ART) regimens early after patients initially start treatment. METHODS: We compared the incidence of, reasons for, and predictors of treatment change within 1 year after starting combination ART (cART), as well as virological and immunological outcomes at 1 year, among 1866 patients from the Swiss HIV Cohort Study who initiated cART during 2000--2001, 2002--2003, or 2004--2005. RESULTS: The durability of initial regimens did not improve over time (P = .15): 48.8% of 625 patients during 2000--2001, 43.8% of 607 during 2002--2003, and 44.3% of 634 during 2004--2005 changed cART within 1 year; reasons for change included intolerance (51.1% of all patients), patient wish (15.4%), physician decision (14.8%), and virological failure (7.1%). An increased probability of treatment change was associated with larger CD4+ cell counts, larger human immunodeficiency virus type 1 (HIV-1) RNA loads, and receipt of regimens that contained stavudine or indinavir/ritonavir, but a decreased probability was associated with receipt of regimens that contained tenofovir. Treatment discontinuation was associated with larger CD4+ cell counts, current use of injection drugs, and receipt of regimens that contained nevirapine. One-year outcomes improved between 2000--2001 and 2004--2005: 84.5% and 92.7% of patients, respectively, reached HIV-1 RNA loads of <50 copies/mL and achieved median increases in CD4+ cell counts of 157.5 and 197.5 cells/microL, respectively (P < .001 for all comparisons). CONCLUSIONS: Virological and immunological outcomes of initial treatments improved between 2000--2001 and 2004--2005, irrespective of uniformly high rates of early changes in treatment across the 3 study intervals.
Resumo:
The current study investigated the effect of fly ash class, source and amount on the compressive strength and freeze-thaw durability of fly ash concrete. Concrete aggregates of varying quality were also included as test variables. The current results and those obtained from previous laboratory and field work indicate that compressive strength can·be affected by fly ash class, source and amount while aggregate quality is shown to have no effect on strength. Freeze-thaw durability of fly ash concrete is strongly affected by aggregate quality and to a lesser degree by fly ash class, amount and source.
Resumo:
RATIONALE: Induction of oxidative stress and impairment of the antioxidant defense are considered important biological responses following nanoparticle (NP) exposure. The acellular in vitro dithiothreitol (DTT) assay is proposed to measure the oxidative potential of NP. In addition, DTT can be considered as a model compound of sulfur containing antioxidants. The objective of this work is to evaluate the surface reactivity in solution of a NP panel toward DTT. METHOD: The NP panel was composed of four carbonaceous particles, six types of metal oxides and silver with primary size ranged from 7 to 300 nm. Suspensions were prepared in surfactant solution with 30 min sonication. DTT was used as reductant to evaluate the oxidative properties of the different NP. The determination of the NP ability to catalyze electron transfer from DTT to oxygen was carried out as described in Sauvain et al., Nanotoxicology, 2008, 2:3, 121−129. RESULTS: All the carbonaceous NP catalyzed the oxidation of DTT by oxygen following the mass based order: carbon black > diesel exhaust particle > nanotubes > fullerene. A contrasting reactivity was observed for the metallic NP. Except for nickel oxide and metallic silver, which reacted similarly to the carbonaceous NP, all other metal oxides hindered the oxidation of DTT by oxygen, with ZnO being the most effective one. CONCLUSIONS : DTT was stabilized against oxidation in the presence of metal oxide NP in the solution. This suggests that different chemical interactions take place compared with carbonaceous NP. To explain these differences, we hypothesize that DTT could form complexes with the metal oxide surface (or dissolved metal ions), rendering it less susceptible to oxidation. By analogy, such a process could be thought to apply in biological systems with sulfur−containing antioxidants, reducing their buffer capacity. Such NP could thus contribute to oxidative stress by an alternative mechanism.