935 resultados para cannabinoid drugs
Resumo:
Flavonoids are low-molecular weight, aromatic compounds derived from fruits, vegetables, and other plant components. The consumption of these phytochemicals has been reported to be associated with reduced cardiovascular disease (CVD) risk, attributed to their anti-inflammatory, anti-proliferative, and anti-thrombotic actions. Flavonoids exert these effects by a number of mechanisms which include attenuation of kinase activity mediated at the cell-receptor level and/or within cells, and are characterized as broad-spectrum kinase inhibitors. Therefore, flavonoid therapy for CVD is potentially complex; the use of these compounds as molecular templates for the design of selective and potent small-molecule inhibitors may be a simpler approach to treat this condition. Flavonoids as templates for drug design are, however, poorly exploited despite the development of analogues based on the flavonol, isoflavonone, and isoflavanone subgroups. Further exploitation of this family of compounds is warranted due to a structural diversity that presents great scope for creating novel kinase inhibitors. The use of computational methodologies to define the flavonoid pharmacophore together with biological investigations of their effects on kinase activity, in appropriate cellular systems, is the current approach to characterize key structural features that will inform drug design. This focussed review highlights the potential of flavonoids to guide the design of clinically safer, more selective, and potent small-molecule inhibitors of cell signalling, applicable to anti-platelet therapy.
Resumo:
This is the second in a short series of articles that focus on what GPs should consider when monitoring and prescribing specialist‐initiated palliative‐care drugs. Here, the authors summarise the key issues around the use of methadone for pain management.
Resumo:
Key point summary • Cerebellar ataxias are progressive debilitating diseases with no known treatment and are associated with defective motor function and, in particular, abnormalities to Purkinje cells. • Mutant mice with deficits in Ca2+ channel auxiliary α2δ-2 subunits are used as models of cerebellar ataxia. • Our data in the du2J mouse model shows an association between the ataxic phenotype exhibited by homozygous du2J/du2J mice and increased irregularity of Purkinje cell firing. • We show that both heterozygous +/du2J and homozygous du2J/du2J mice completely lack the strong presynaptic modulation of neuronal firing by cannabinoid CB1 receptors which is exhibited by litter-matched control mice. • These results show that the du2J ataxia model is associated with deficits in CB1 receptor signalling in the cerebellar cortex, putatively linked with compromised Ca2+ channel activity due to reduced α2δ-2 subunit expression. Knowledge of such deficits may help design therapeutic agents to combat ataxias. Abstract Cerebellar ataxias are a group of progressive, debilitating diseases often associated with abnormal Purkinje cell (PC) firing and/or degeneration. Many animal models of cerebellar ataxia display abnormalities in Ca2+ channel function. The ‘ducky’ du2J mouse model of ataxia and absence epilepsy represents a clean knock-out of the auxiliary Ca2+ channel subunit, α2δ-2, and has been associated with deficient Ca2+ channel function in the cerebellar cortex. Here, we investigate effects of du2J mutation on PC layer (PCL) and granule cell (GC) layer (GCL) neuronal spiking activity and, also, inhibitory neurotransmission at interneurone-Purkinje cell(IN-PC) synapses. Increased neuronal firing irregularity was seen in the PCL and, to a less marked extent, in the GCL in du2J/du2J, but not +/du2J, mice; these data suggest that the ataxic phenotype is associated with lack of precision of PC firing, that may also impinge on GC activity and requires expression of two du2J alleles to manifest fully. du2J mutation had no clear effect on spontaneous inhibitory postsynaptic current (sIPSC) frequency at IN-PC synapses, but was associated with increased sIPSC amplitudes. du2J mutation ablated cannabinoid CB1 receptor (CB1R)-mediated modulation of spontaneous neuronal spike firing and CB1Rmediated presynaptic inhibition of synaptic transmission at IN-PC synapses in both +/du2J and du2J/du2J mutants; effects that occurred in the absence of changes in CB1R expression. These results demonstrate that the du2J ataxia model is associated with deficient CB1R signalling in the cerebellar cortex, putatively linked with compromised Ca2+ channel activity and the ataxic phenotype.
Resumo:
A new synthetic tripeptide-based hydrogel has been discovered at physiological pH and temperature. This hydrogel has been thoroughly characterized using different techniques including field emission scanning electron microscopic (FESEM) and high-resolution transmission electron microscopic (HR-TEM) imaging, small- and wide-angle X-ray diffraction analyses, FT-IR, circular dichroism, and rheometric analyses. Moreover, this gel exhibits thixotropy and injectability. This hydrogel has been used for entrapment and sustained release of an antibiotic vancomycin and vitamin B12 at physiological pH and temperature for about 2 days. Interestingly, MTT assay of these gelator molecules shows almost 100% cell viability of this peptide gelator, indicating its noncytotoxicity.
Resumo:
Reduced subjective experience of reward (anhedonia) is a key symptom of major depression. The anti-obesity drug and cannabinoid type 1 receptor (CB(1)) antagonist, rimonabant, is associated with significant rates of depression and anxiety in clinical use and was recently withdrawn from the market because of these adverse effects. Using a functional magnetic resonance imaging (fMRI) model of reward we hypothesized that rimonabant would impair reward processing. Twenty-two healthy participants were randomly allocated to receive rimonabant (20 mg), or placebo, for 7 d in a double-blind, parallel group design. We used fMRI to measure the neural response to rewarding (sight and/or flavour of chocolate) and aversive (sight of mouldy strawberries and/or an unpleasant strawberry taste) stimuli on the final day of drug treatment. Rimonabant reduced the neural response to chocolate stimuli in key reward areas such as the ventral striatum and the orbitofrontal cortex. Rimonabant also decreased neural responses to the aversive stimulus condition in the caudate nucleus and ventral striatum, but increased lateral orbitofrontal activations to the aversive sight and taste of strawberry condition. Our findings are the first to show that the anti-obesity drug rimonabant inhibits the neural processing of rewarding food stimuli in humans. This plausibly underlies its ability to promote weight loss, but may also indicate a mechanism for inducing anhedonia which could lead to the increased risk of depressive symptomatology seen in clinical use. fMRI may be a useful method of screening novel agents for unwanted effects on reward and associated clinical adverse reactions.
Resumo:
Extinction following positively reinforced operant conditioning reduces response frequency, at least in part through the aversive or frustrative effects of non-reinforcement. According to J.A. Gray's theory, non-reinforcement activates the behavioural inhibition system which in turn causes anxiety. As predicted, anxiolytic drugs including benzodiazepines affect the operant extinction process. Recent studies have shown that reducing GABA-mediated neurotransmission retards extinction of aversive conditioning. We have shown in a series of studies that anxiolytic compounds that potentiate GABA facilitate extinction of positively reinforced fixed-ratio operant behaviour in C57B1/6 male mice. This effect does not occur in the early stages of extinction, nor is it dependent on cumulative effects of the compound administered. Potentiation of GABA at later stages has the effect of increasing sensitivity to the extinction contingency and facilitates the inhibition of the behaviour that is no longer required. The GABAergic hypnotic, zolpidem, has the same selective effects on operant extinction in this procedure. The effects of zolpidem are not due to sedative action. There is evidence across our series of experiments that different GABA-A subtype receptors are involved in extinction facilitation and anxiolysis. Consequently, this procedure may not be an appropriate model for anxiolytic drug action, but it may be a useful technique for analysing the neural bases of extinction and designing therapeutic interventions in humans where failure to extinguish inappropriate behaviours can lead to pathological conditions such as post-traumatic stress disorder.
Resumo:
Several recent studies have shown that reducing gamma-aminobutyric acid (GABA)-mediated neurotransmission retards extinction of aversive conditioning. However, relatively little is known about the effect of GABA on extinction of appetitively motivated tasks. We examined the effect of chlordiazepoxide (CDP), a classical benzodiazepine (BZ) and two novel subtype-selective BZs when administered to male C57Bl/6 mice during extinction following training on a discrete-trial fixed-ratio 5 (FR5) food reinforced lever-press procedure. Initially CDP had no effect, but after several extinction sessions CDP significantly facilitated extinction, i.e. slowed responding, compared with vehicle-treated mice. This effect was not due to drug accumulation because mice switched from vehicle treatment to CDP late in extinction showed facilitation immediately. Likewise, this effect could not be attributed to sedation because the dose of CDP used (15 mg/kg i.p.) did not suppress locomotor activity. The two novel subtype-selective BZ partial agonists, L-838417 and TP13, selectively facilitated extinction in similar fashion to CDP. The non-GABAergic anxiolytic buspirone was also tested and found to have similar effects when administered at a non-sedating dose. These studies demonstrate that GABA-mediated processes are important during extinction of an appetitively motivated task, but only after the animals have experienced several extinction sessions.
Resumo:
Disturbances in the regulation of reward and aversion in the brain may underlie disorders such as obesity and eating disorders. We previously showed that the cannabis receptor subtype (CB1) inverse agonist rimonabant, an antiobesity drug withdrawn due to depressogenic side effects, diminished neural reward responses yet increased aversive responses (Horder et al., 2010). Unlike rimonabant, tetrahydrocannabivarin is a neutral CB1 receptor antagonist (Pertwee, 2005) and may therefore produce different modulations of the neural reward system. We hypothesized that tetrahydrocannabivarin would, unlike rimonabant, leave intact neural reward responses but augment aversive responses. Methods: We used a within-subject, double-blind design. Twenty healthy volunteers received a single dose of tetrahydrocannabivarin (10mg) and placebo in randomized order on 2 separate occasions. We measured the neural response to rewarding (sight and/or flavor of chocolate) and aversive stimuli (picture of moldy strawberries and/or a less pleasant strawberry taste) using functional magnetic resonance imaging. Volunteers rated pleasantness, intensity, and wanting for each stimulus. Results: There were no significant differences between groups in subjective ratings. However, tetrahydrocannabivarin increased responses to chocolate stimuli in the midbrain, anterior cingulate cortex, caudate, and putamen. Tetrahydrocannabivarin also increased responses to aversive stimuli in the amygdala, insula, mid orbitofrontal cortex, caudate, and putamen. Conclusions: Our findings are the first to show that treatment with the CB1 neutral antagonist tetrahydrocannabivarin increases neural responding to rewarding and aversive stimuli. This effect profile suggests therapeutic activity in obesity, perhaps with a lowered risk of depressive side effects. Keywords: reward, THCv, obesity, fMRI, cannabinoid
Resumo:
Cannabis has a long history of anecdotal medicinal use and limited licensed medicinal use. Until recently, alleged clinical effects from anecdotal reports and the use of licensed cannabinoid medicines are most likely mediated by tetrahydrocannabinol by virtue of: 1) this cannabinoid being present in the most significant quantities in these preparations; and b) the proportion:potency relationship between tetrahydrocannabinol and other plant cannabinoids derived from cannabis. However, there has recently been considerable interest in the therapeutic potential for the plant cannabinoid, cannabidiol (CBD), in neurological disorders but the current evidence suggests that CBD does not directly interact with the endocannabinoid system except in vitro at supraphysiological concentrations. Thus, as further evidence for CBD’s beneficial effects in neurological disease emerges, there remains an urgent need to establish the molecular targets through which it exerts its therapeutic effects. Here, we conducted a systematic search of the extant literature for original articles describing the molecular phar- macology of CBD. We critically appraised the results for the validity of the molecular targets proposed. Thereafter, we considered whether the molecular targets of CBD identified hold therapeutic potential in relevant neurological diseases. The molecular targets identified include numerous classical ion channels, receptors, transporters, and enzymes. Some CBD effects at these targets in in vitro assays only manifest at high concentrations, which may be difficult to achieve in vivo, particularly given CBD’s relatively poor bioavailability. Moreover, several targets were asserted through experimental designs that demonstrate only correlation with a given target rather than a causal proof. When the molecular targets of CBD that were physiologically plausible were considered for their potential for exploitation in neurological therapeu- tics, the results were variable. In some cases, the targets identified had little or no established link to the diseases considered. In others, molecular targets of CBD were entirely consistent with those already actively exploited in relevant, clinically used, neurological treatments. Finally, CBD was found to act upon a number of targets that are linked to neurological therapeutics but that its actions were not consistent with modulation of such targets that would derive a therapeutically beneficial outcome. Overall, we find that while >65 discrete molecular targets have been reported in the literature for CBD, a relatively limited number represent plausible targets for the drug’s action in neurological disorders when judged by the criteria we set. We conclude that CBD is very unlikely to exert effects in neurological diseases through modulation of the endocannabinoid system. Moreover, a number of other molecular targets of CBD reported in the literature are unlikely to be of relevance owing to effects only being observed at supraphysiological concentrations. Of interest and after excluding unlikely and implausible targets, the remaining molecular targets of CBD with plausible evidence for involvement in therapeutic effects in neurological disorders (e.g., voltage-dependent anion channel 1, G protein-coupled receptor 55, CaV3.x, etc.) are associated with either the regulation of, or responses to changes in, intracellular calcium levels. While no causal proof yet exists for CBD’s effects at these targets, they represent the most probable for such investigations and should be prioritized in further studies of CBD’s therapeutic mechanism of action.
Resumo:
Nucleotide-based drug candidates such as antisense oligonucleotides, aptamers, immunoreceptor-activating nucleotides, or (anti)microRNAs hold great therapeutic promise for many human diseases. Phosphorothioate (PS) backbone modification of nucleotide-based drugs is common practice to protect these promising drug candidates from rapid degradation by plasma and intracellular nucleases. Effects of the changes in physicochemical properties associated with PS modification on platelets have not been elucidated so far. Here we report the unexpected binding of PS-modified oligonucleotides to platelets eliciting strong platelet activation, signaling, reactive oxygen species generation, adhesion, spreading, aggregation, and thrombus formation in vitro and in vivo. Mechanistically, the platelet-specific receptor glycoprotein VI (GPVI) mediates these platelet-activating effects. Notably, platelets from GPVI function-deficient patients do not exhibit binding of PS-modified oligonucleotides, and platelet activation is fully abolished. Our data demonstrate a novel, unexpected, PS backbone-dependent, platelet-activating effect of nucleotide-based drug candidates mediated by GPVI. This unforeseen effect should be considered in the ongoing development programs for the broad range of upcoming and promising DNA/RNA therapeutics.
Resumo:
The endocannabinoid system has been implicated in several neurobiological processes, including neurodegeneration and neuro protection. The aim of this study was to evaluate the effects of unilateral retinal ablation on the expression of the cannabinoid receptor subtype 1 (CB1) at both protein and mRNA levels in the optic tectum of the adult chick brain. After different survival times postlesion (2-30 days), the chick brains were subjected to immunohistochemical, immunoblotting, and real-time PCR procedures to evaluate CB1 expression. TUNEL and Fluoro-Jade B were used to verify the possible occurrence of cell death, and immunostaining for the microtubule-associated protein MAP-2 was performed to verify possible dendritic remodeling after lesions. No cell death could be observed in the deafferented tectum, at least up to 30 days postlesion, although Fluoro-Jade B could reveal degenerating axons and terminals. Retinal ablation seems to generate an increase of CB1 protein in the optic tectum and other retinorecipient visual areas, which paralleled an increase in MAP-2 staining. On the other hand, CB, mRNA levels were not changed after retinal ablation. Our results reveal that CB, expression in visual structures of the adult chick brain may be negatively regulated by the retinal innervation. The increase of CB1 receptor expression observed after retinal removal indicates that these receptors are not presynaptic in retinal axons projecting to the tectum and suggests a role of the cannabinoid system in plasticity processes ensuing after lesions. (c) 2008 Wiley-Liss, Inc.
Resumo:
Aims: The ATP-binding cassette transporters, ABCA1 and ABCG1, are LXR-target genes that play an important role in reverse cholesterol transport. We examined the effects of inhibitors of the cholesterol absorption (ezetimibe) and synthesis (statins) on expression of these transporters in HepG2 cells and peripheral blood mononuclear cells (PBMCs) of individuals with primary (and nonfamilial) hypercholesterolemia (HC). Materials & methods: A total of 48 HC individuals were treated with atorvastatin (10 mg/day/4 weeks) and 23 were treated with ezetimibe (10 mg/day/4 weeks), followed by simvastatin (10 mg/day/8 weeks) and simvastatin plus ezetimibe (10 mg of each/day/4 weeks). Gene expression was examined in statin- or ezetimibe-treated and control HepG2 cells as well as PBMCs using real-time PCR. Results: In PBMCs, statins and ezetimibe downregulated ABCA1 and ABCG1 mRNA expression but did not modulate NR1H2 (LxR-beta) and NR1H3 (LXR-alpha) levels. Positive correlations of ABCA1 with ABCG1 and of NR1H2 with NR1H3 expressions were found in all phases of the treatments. In HepG2 cells, ABCA1 mRNA levels remained unaltered while ABCG1 expression was increased by statin (1.0-10.0 mu M) or ezetimibe (5.0 mu M) treatments. Atorvastatin upregulated NR1H2 and NR1H3 only at 10.0 mu M, meanwhile ezetimibe (1.0-5.0 mu M) downregulated NR1H2 but did not change NR1H3 expression. Conclusion: Our findings reveal that lipid-lowering drugs downregulate ABCA1 and ABCG1 mRNA expression in PBMCs of HC individuals and exhibit differential effects on HepG2 cells. Moreover, they indicate that the ABCA1 and ABCG1 transcript levels were not correlated directly to LXR mRNA expression in both cell models treated with lipid-lowering drugs.
Resumo:
Hemopressin (Hp), a 9-residue alpha-hemoglobin-derived peptide, was previously reported to function as a CB(1) cannabinoid receptor antagonist (1). In this study, we report that mass spectrometry (MS) data from peptidomics analyses of mouse brain extracts identified N-terminally extended forms of Hp containing either three (RVD-Hp alpha) or two (VD-Hp alpha) additional amino acids, as well as a beta-hemoglobinderived peptide with sequence similarity to that of hemopressin (VD-Hp beta). Characterization of the alpha-hemoglobin-derived peptides using binding and functional assays shows that in contrast to Hp, which functions as a CB(1) cannabinoid receptor antagonist, both RVD-Hp alpha and VD-Hp alpha function as agonists. Studies examining the increase in the phosphorylation of ERK1/2 levels or release of intracellular Ca(2+) indicate that these peptides activate a signal transduction pathway distinct from that activated by the endo-cannabinoid, 2-arachidonoylglycerol, or the classic CB(1) agonist, Hu-210. This finding suggests an additional mode of regulation of endogenous cannabinoid receptor activity. Taken together, these results suggest that the CB(1) receptor is involved in the integration of signals from both lipid-and peptide-derived signaling molecules.-Gomes, I., Grushko, J. S., Golebiewska, U., Hoogendoorn, S., Gupta, A., Heimann, A. S., Ferro, E. S., Scarlata, S., Fricker, L. D., Devi, L. A. Novel endogenous peptide agonists of cannabinoid receptors. FASEB J. 23, 3020-3029 (2009). www.fasebj.org
Resumo:
[Ru-2(dNSAID)(4)Cl] and novel [Ru-2(dNSAID)(4)(H2O)(2)]PF6 complexes, where dNSAID = deprotonated carboxylate from the non-steroidal anti-inflammatory drugs (NSIDs), respectively: ibuprofen, Hibp (1) and aspirin, Hasp (2); naproxen, Hnpx (3) and indomethacin, Hind (4), have been prepared and characterized by optical spectroscopic methods. All of the compounds exhibit mixed valent Ru-2(II, III) cores where metal-metal bonds are stabilized by four drug-carboxylate bridging ligands in paddlewheel type structures. The diruthenium complexes and their parent NSAIDs showed no significant effects for Hep2 human larynx or T24/83 human bladder tumor. In contrast, the coordination of Ru-2(II,III) core led to synergistic effects that increased significantly the inhibition of C6 rat glioma proliferation in relation to the organic NSAIDs naproxen and ibuprofen, The possibility that the complexes Ru-2-ibp and Ru-2-npx may exert effects (anti-angiogenic and anti-matrix metalloprotease) that are similar to those exhibited by NAMI-A opens new horizons for in vivo C6 glioma model studies. (C) 2007 Elsevier Ltd. All rights reserved.