918 resultados para butyl radicals
Resumo:
We intend to divulge an easy experiment that permits the determination of molar masses of various compounds by cryoscopy. The major advantage of this is the use of the tert-butyl alcohol as a solvent, which requires simple apparatus and easy procedures. The melting point of this alcohol is around 25 ºC, which makes it easy to freeze and then melt the solutions. This solvent has a high cryoscopic constant and is miscible with both polar and non-polar compounds. The molar masses of acetone, water, chloroform, dichloro-methane, ethanol, hexane, carbon tetrachloride and toluene were determined. The results were good except for water. Even though there are reliable techniques of molar mass determination nowadays, this method is still frequently taught in undergraduate courses.
Resumo:
The counteranion exchange of quaternary 1,2,3-triazolium salts was examined using a simple method that permitted halide ions to be swap for a variety of anions using an anion exchange resin (A¯ form). The method was applied to 1,2,3-triazolium-based ionic liquids and the iodideto- anion exchange proceeded in excellent to quantitative yields, concomitantly removing halide impurities. Additionally, an anion exchange resin (N3¯ form) was used to obtain the benzyl azide from benzyl halide under mild reaction. Likewise, following a similar protocol, bis(azidomethyl)arenes were also synthesized in excellent yields. The results of a proton NMR spectroscopic study of simple azolium-based ion pairs are discussed, with attention focused on the significance of the charged-assisted (CH)+···anion hydrogen bonds of simple azolium systems such as 1-butyl-3-methylimidazolium and 1-benzyl-3-methyl-1,2,3-triazolium salts.
Resumo:
The counteranion exchange of quaternary 1,2,3-triazolium salts was examined using a simple method that permitted halide ions to be swap for a variety of anions using an anion exchange resin (A¯ form). The method was applied to 1,2,3-triazolium-based ionic liquids and the iodideto- anion exchange proceeded in excellent to quantitative yields, concomitantly removing halide impurities. Additionally, an anion exchange resin (N3¯ form) was used to obtain the benzyl azide from benzyl halide under mild reaction. Likewise, following a similar protocol, bis(azidomethyl)arenes were also synthesized in excellent yields. The results of a proton NMR spectroscopic study of simple azolium-based ion pairs are discussed, with attention focused on the significance of the charged-assisted (CH)+···anion hydrogen bonds of simple azolium systems such as 1-butyl-3-methylimidazolium and 1-benzyl-3-methyl-1,2,3-triazolium salts.
Resumo:
The counteranion exchange of quaternary 1,2,3-triazolium salts was examined using a simple method that permitted halide ions to be swap for a variety of anions using an anion exchange resin (A¯ form). The method was applied to 1,2,3-triazolium-based ionic liquids and the iodideto- anion exchange proceeded in excellent to quantitative yields, concomitantly removing halide impurities. Additionally, an anion exchange resin (N3¯ form) was used to obtain the benzyl azide from benzyl halide under mild reaction. Likewise, following a similar protocol, bis(azidomethyl)arenes were also synthesized in excellent yields. The results of a proton NMR spectroscopic study of simple azolium-based ion pairs are discussed, with attention focused on the significance of the charged-assisted (CH)+···anion hydrogen bonds of simple azolium systems such as 1-butyl-3-methylimidazolium and 1-benzyl-3-methyl-1,2,3-triazolium salts.
Resumo:
An experiment for the synthesis of isobutylene from tert-butanol dehydratation using oxalic acid as catalyst, followed by preparations of tert-butyl benzoate and tert-butyl cinnamate is described. The synthesis are simple, requiring two periods of 4 hours and are suitable for undergraduate organic chemistry experimental courses.
Resumo:
The present experiment describes the preparation, characterization of n-butyl(pyridil)cobaloxime complex and its electrochemical property. The infrared and uv-visible absorption spectra were used to characterize the complex obtained. The infrared spectrum of the compound showed characteristics bands that indicated the formation of the Co-C chemical bond formation. The electronic absorption spectrum in acetonitrile showed transition bands attributed to p-p*, metal-to-ligand charge transfer, d-d transitions and charge transfer Co-C. The electrochemical property was investigated by the pulse differential voltammetry technique. Two oxidation processes: Co(I)/Co(II) at -423 mV and Co(II)/Co(III) at 752 mV were observed.
Resumo:
In this paper we report the synthesis of biologically active compounds through a [3+4] cycloaddition reaction to produce the main frame structure, followed by several conventional transformations. The 1,2alpha,4alpha,5-tetramethyl-8-oxabicyclo[3.2.1]oct-6-en-3-one (11) obtained from a [3+4] cycloaddition reaction was converted into 1,2alpha,4alpha,5-tetramethyl-6,7-exo-isopropylidenedioxi-8 -oxabicyclo[3.2.1]octan-3-one (13) in 46% yield. This was further converted into the alcohols 1,2alpha,4alpha,5-tetramethyl-6,7-exo-isopropylidenedioxi-8-oxabicyclo[3.2.1]octan-3 alpha-ol (14), 1,2alpha,4alpha,5-tetramethyl-6,7-exo-isopropylidenedioxi-8 -oxabicyclo[3.2.1]octan-3beta-ol (15), 1,2alpha,4alpha,5-tetramethyl-3-butyl-6,7-exo-isopropylidenedioxi-8-oxabicyclo[3.2.1]octan-3 alpha-ol (17), 1,2alpha,4alpha,5-tetramethyl-3-hexyl-6,7-exo-isopropylidenedioxi-8-oxabicyclo[3.2.1]octan-3 alpha-ol (18) and 1,2alpha,4alpha,5-tetramethyl-3-decyl-6,7-exo-isopropylidenedioxi-8-oxabicyclo[3.2.1]octan-3 alpha-ol (19). Dehydration of 17, 18 and 19 with thionyl chloride in pyridine resulted in the alkenes 20, 21 and 22 in ca. 82% - 89% yields from starting alcohols. The herbicidal activity of the compounds synthesized was evaluated at a concentration of 100 µg g-1. The most active compound was 21 causing 42,7% inhibition against Cucumis sativus L.
Resumo:
The [4+3] cycloaddition was utilized in order to prepare 8-oxabicyclo[3.2.1]oct-6-en-3-one (1) derivatives. The correspondent acetonide 6 was converted into several alcohols (11-16). Addition of aryllithium reagents to 6 resulted in 3-(2-fluorophenyl)-6,7-exo-isopropylidenedioxy -8-oxabicyclo[3.2.1]octan-3alpha-ol (11, 72%) and 3-(2,4-dimethoxyphenyl)-6,7-exo-isopropylidenedioxy-8-oxabicyclo[3.2.1]octan -3alpha-ol (16, 20%). The 3-butyl-6,7-exo-isopropylidenedioxy-8-oxabicyclo[3.2.1]octan-3 alpha-ol (15, 56%) was obtained through a Grignard reaction. Reduction of 6 resulted in 6,7-exo-isopropylidenedioxy-8-oxabicyclo[3.2.1]octan-3 beta-ol (7, 62%) and 6,7-exo-isopropylidenedioxy-8-oxabicyclo[3.2.1]octan-3 alpha-ol (8, 20%). The alcohols were treated with thionyl chloride in pyridine, and the corresponding alkenes were obtained with 31-80% yield. The effect of these compounds on the development of radicle and aerial parts of Sorghum bicolor was evaluated.
Resumo:
The aim of this work was to study the influence of effluent organic matter (EfOM) on micropollutants removal by ozone and UV/H2O2. To perform the experiments, deionized water and municipal secondary effluents (SE) were artificially contaminated with atrazine (ATZ) and treated by the two proposed methods. ATZ concentration, COD and TOC were recorded along the reaction time and used to evaluate EfOM effect on the system efficiency. Results demonstrate that the presence of EfOM can significantly reduce the micropollutant removal rate due to competition of EfOM components to react with radicals and/or molecular ozone. The hydroxyl radical scavenging caused by EfOM was quantified as well as the contribution of molecular ozone and �OH radicals during the ozonation of SE. EfOM components promoted higher inhibition of ATZ oxidation by hydroxyl radicals than by molecular ozone.
Resumo:
Aerobic metabolism changes rapidly to glycolysis post-mortem resulting in a pH-decrease during the transformation of muscle in to meat affecting ligand binding and redox potential of the heme iron in myoglobin, the meat pigment. The "inorganic chemistry" of meat involves (i) redox-cycling between iron(II), iron(III), and iron(IV)/protein radicals; (ii) ligand exchange processes; and (iii) spin-equilibra with a change in coordination number for the heme iron. In addition to the function of myoglobin for oxygen storage, new physiological roles of myoglobin are currently being discovered, which notably find close parallels in the processes in fresh meat and nitrite-cured meat products. Myoglobin may be characterized as a bioreactor for small molecules like O2, NO, CO, CO2, H2O, and HNO with importance in bio-regulation and in protection against oxidative stress in vivo otherwise affecting lipids in membranes. Many of these processes may be recognised as colour changes in fresh meat and cured meat products under different atmospheric conditions, and could also be instructive for teaching purposes.
Resumo:
In this work, seven samples of humic acids extracted from gleysoils were investigated. These studies, using NMR CP/MAS 13C techniques, did not show significant correlation between the E4/E6 ratio and the degree of aromaticity. However, dipolar dephasing (DD) measurements of condensed aromatic or substituted carbons showed a negative correlation of 0.94. Also, there was a good correlation between the amount of semiquinone free radicals measured by the EPR technique and condensed aromatic rings measured by NMR CP/MAS 13C with the DD technique. The content of semiquinone free radicals was quantified by EPR spectroscopy and was correlated with the humification (degree of aromaticity) of the humic substances. The results indicated that the E4/E6 ratio identifies the degree of aromatic rings condensation. It was also found that the degree of aromaticity, measured by NMR, as frequently presented in the literature (by conventional CP/MAS), underestimates aromatic rings in condensed structures.
Resumo:
Carotenoids are widely distributed in nature, providing yellow, orange or red color in a great number of vegetables, microorganisms and in some animals. Carotenoids act as biological antioxidants and seem to play an important role in human health by protecting cells and tissues from the damaging effects of free radicals and singlet oxygen. Several authors describe the oxidative cleavage of carotenoids in flavor compounds as occuring through chemical or photochemical degradations or through biotechnological processes. Biotransformation of carotenoids seems to be a reasonable alternative to produce flavor compounds since these compounds are considered 'natural' ingredients. In this work we describe the properties of some carotenoids, as well as biotechnological approaches to obtain its oxyfunctionalized derivatives.
Resumo:
The mechanism and applications of the Fenton reaction assisted by iron-reducing phenolic compounds (IRPC) is reviewed. The presence of IRPC leads to the formation of a larger number of free radicals. The relationship between the redox potential and the IRPC structure is discussed. The effect of humic substances in the degradation of xenobiotics is also included, since these substances are able to reduce metallic ions. The natural occurrence of Fe3+/H2O2/IRPC in wood biodegradation processes, as well as their application is also discussed. The review concludes with the advantages of the Fe3+/H2O2/IRPC systems and some considerations for further process optimization and their applications at industrial levels.
Resumo:
The specific consumption and carbon monoxide (CO) and nitrogen oxide (NO) emissions from gasolines formulated with ethanol, methyl tert-butyl ether (MTBE) and tert-amyl ethyl ether (TAEE) were evaluated in the rich, stoichiometric and lean-burn regions during the operation of an Otto-cycle engine. The use of ethanol as an additive presented high specific consumption, while gasoline formulated with TAEE showed low specific consumption with the engine operating under lean-burn conditions. The ethers evaluated here presented a low percentage of CO in the rich-burn region when compared with ethanol.
Resumo:
The aim of this work is the production and characterization of plasma polymerized acetaldehyde thin films. These films show highly polar species, are hydrophilic, organophilic and easily adsorb organic reactants with CO radicals but only allow permeation of reactants with OH radicals. The good step coverage of films deposited on aluminum trenches is useful for sensor development. Films deposited on hydrophobic substrates may result in a discontinued layer, which allows the use of preconcentration in sample pretreatment. Deposition on microchannels showed the possibility of chromatographic columns and/or retention system production to selectively detect or remove organic compounds from gas flows.