901 resultados para butler
Resumo:
The California market squid (Loligo opalescens Berry), also known as the opalescent inshore squid (FAO), plays a central role in the nearshore ecological communities of the west coast of the United States (Morejohn et al., 1978; Hixon, 1983) and it is also a prime focus of California fisheries, ranking first in dollar value and tons landed in recent years (Vojkovich, 1998). The life span of this species is only 7−10 months after hatching, as ascertained by aging statoliths (Butler et al., 1999; Jackson, 1994; Jackson and Domier, 2003) and mariculture trials (Yang, et al., 1986). Thus, annual recruitment is required to sustain the population. The spawning season ranges from April to November and spawning peaks from May to June. In some years there can be a smaller second peak in November. In Monterey Bay, the squids are fished directly on the egg beds, and the consequences of this practice for conservation and fisheries management are unknown but of some concern (Hanlon, 1998). Beginning in April 2000, we began a study of the in situ spawning behavior of L. opalescens in the southern Monterey Bay fishing area.
Resumo:
Cowcod (Sebastes levis) is a large (100-cm-FL), long-lived (maximum observed age 55 yr) demersal rockfish taken in multispecies commercial and recreational fisheries off southern and central California. It lives at 20–500 m depth: adults (>44 cm TL) inhabit rocky areas at 90–300 m and juveniles inhabit fine sand and clay at 40–100 m. Both sexes have similar growth and maturity. Both sexes recruit to the fishery before reaching full maturity. Based on age and growth data, the natural mortality rate is about M =0.055/yr, but the estimate is uncertain. Biomass, recruitment, and mortality during 1951–98 were estimated in a delay-difference model with catch data and abundance indices. The same model gave less precise estimates for 1916–50 based on catch data and assumptions about virgin biomass and recruitment such as used in stock reduction analysis. Abundance indices, based on rare event data, included a habitat-area–weighted index of recreational catch per unit of fishing effort (CPUE index values were 0.003–0.07 fish per angler hour), a standardized index of proportion of positive tows in CalCOFI ichthyoplankton survey data (binomial errors, 0–13% positive tows/yr), and proportion of positive tows for juveniles in bottom trawl surveys (binomial errors, 0–30% positive tows/yr). Cowcod are overfished in the southern California Bight; biomass during the 1998 season was about 7% of the virgin level and recent catches have been near 20 metric tons (t)/yr. Projections based on recent recruitment levels indicate that biomass will decline at catch levels > 5 t/yr. Trend data indicate that recruitment will be poor in the near future. Recreational fishing effort in deep water has increased and has become more effective for catching cowcod. Areas with relatively high catch rates for cowcod are fewer and are farther offshore. Cowcod die after capture and cannot be released alive. Two areas recently closed to bottom fishing will help rebuild the cowcod stock.
Resumo:
Pelagic fishes are not evenly dispersed in the oceans, but aggregate at distinct locations in this vast and open environment. Nomadic species such as mackerels, tunas, and sharks form assemblages at seamounts (Klimley and Butler, 1988; Fontenau, 1991). Fishermen have recognized this behavior and have placed moorings with surface buoys in deep waters to provide artificial landmarks, around which fish concentrate and are more easily captured. These fish aggregating devices (termed FADs) are common in the tropical oceans (see review, Holland, 1996). In a sense, it may only be the larger size that separates a seamount from a man-made FAD.
Resumo:
The field emissions from three different types of carbon films are studied using a Kiethly voltage-current source-measure unit under computer control. The three types of carbon films are : 1) a-C:H:N deposited using an inductively coupled rf PECVD process, where the N content in the films can be as high as 30 at %; 2) cathodic arc deposited tetrahedral amorphous carbon with embedded regions of carbon nanotube and anion structures and 3) unoriented carbon nanotube films on a porous substrate. The films are formed by filtering a solution of nanotubes dispersed in alcohol through the pores and drying.
Resumo:
By using carbon nanotubes as the smallest possible scattering element, light can be diffracted in a highly controlled manner to produce a 2D image, as reported by Haider Butt and co-workers on page OP331. An array of carbon nanotubes is elegantly patterned to produce a high resolution hologram. In response to incident light on the hologram, a high contrast and wide field of view "CAMBRIDGE" image is produced.
Resumo:
Carbon nanotube is one of the promising materials for exploring new concepts in solar energy conversion and photon detection. Here, we report the first experimental realization of a single core/shell nanowire photovoltaic device (2-4μm) based on carbon nanotube and amorphous silicon. Specifically, a multi-walled carbon nanotube (MWNTs) was utilized as the metallic core, on which n-type and intrinsic amorphous silicon layers were coated. A Schottky junction was formed by sputtering a transparent conducting indium-tin-oxide layer to wrap the outer shell of the device. The single coaxial nanowire device showed typical diode ratifying properties with turn-on voltage around 1V and a rectification ratio of 104 when biased at ±2V. Under illumination, it gave an open circuit voltage of ∼0.26V. Our study has shown a simple and useful platform for gaining insight into nanowire charge transport and collection properties. Fundamental studies of such nanowire device are important for improving the efficiency of future nanowire solar cells or photo detectors. © 2012 IEEE.
Resumo:
Carbon nanotubes are used as the smallest possible scattering element for diffracting light in a highly controlled manner to produce a 2D image. An array of carbon nanotubes is elegantly patterned to produce a high resolution hologram. In response to incident light on the hologram, a high contrast and wide field of view CAMBRIDGE image is produced.
Resumo:
We report the remarkable diffraction effects produced from circular patterned arrays of multiwalled carbon nanotubes (MWCNTs). Highly ordered circular arrays of multiwalled carbon nanotubes (with inter-nanotube spacings of 633 nm) display optical dispersion effects similar to compact discs. These arrays display remarkable diffraction patterns in the far field which are spatially continuous. High quality diffraction patterns were obtained experimentally which are in excellent agreement with the theoretical calculations. The achieved continuous diffraction patterns pave the way towards the utilization of engineered carbon nanotube arrays in applications like three dimensional holograms.
Resumo:
We demonstrate metamaterials operating in the near-visible regime based on two-dimensional arrays of gold-coated silicon nanopillars. The nanopillar arrays demonstrate a cutoff response at the metamaterial plasma frequency in accordance with theory and can be utilized for filtering applications. A plasma frequency in the near visible region of λ = 1 μm is calculated numerically for an array with a lattice constant of 300 nm and wire radius of 50 nm, with reflection measurements in agreement with numerical calculations. Such structures can be utilized for achieving negative-index based metamaterials for the visible spectrum.