987 resultados para biological rhythms
Resumo:
This contribution summarizes knowledge on the biology (population dynamics, reproduction, ecology) of 25 fish species from the Lower Amazon, Brazil, based on data from a Brazilian-German field project (IARA) and a review of the literature.
Resumo:
The 1987-1995 length composition of quarterly catches of Scomberomorus commerson (Lacepede 1800) was analyzed to determine various biological reference points for management purposes. These include: fishing mortality producing maximum yield-per-recruit in weight (F sub(max)), fishing mortality producing 50% relative mean mature biomass (F sub(50)), and fishing mortality producing recruits that would exactly replace their parent stock (F sub(rep)). F sub(max) provided misleading suggestions to increase fishing mortality on the stock which is currently at a low level. On the other hand, both F sub(50) and F sub(rep) provided acceptable results, suggesting reduction on the current fishing mortality by 17-40%.
Resumo:
Biological/fisheries parameters (L sub(oo) M, F) are presented for four fish species (Gadiculus argenteus; Gaidropsarus mediterraneous; Symphurus ligulatus; Lepidorhombus boscii) as well as body length-weight and length-height relationships for 11 and 12 fish species, respectively, estimated from trawl samples collected using three different cod-ends (stretched mesh size: 14 mm and 20 mm diamond-shaped and 20 mm square-shaped) during 1993-1994, in the western Aegean and North Euboikos Gulf, Greece. The fisheries paramaters, estimated from length-frequency using the ELEFAN approach and software, are discussed in the light of recent information on the selectivity of the presently used trawl cod-end (14 mm diamond shaped)
Resumo:
Booklet telling the story of the FBA from its founding in 1929 until its Golden Jubilee in 1979. The booklet aimed to produce a readable account of those aspects of freshwater biology that have been among the main themes of the Association's research, as well as some aspects of its history and the philosophy guiding its foundation. The publication includes many images of the FBA's work and history as well as images and illustrations on lake ecology and applied science.
Resumo:
Size distribution within re- ported landings is an important aspect of northern Gulf of Mexico penaeid shrimp stock assessments. It reflects shrimp population characteristics such as numerical abundance of various sizes, age structure, and vital rates (e.g. recruitment, growth, and mortality), as well as effects of fishing, fishing power, fishing practices, sampling, size-grading, etc. The usual measure of shrimp size in archived landings data is count (C) the number of shrimp tails (abdomen or edible portion) per pound (0.4536 kg). Shrimp are marketed and landings reported in pounds within tail count categories. Statistically, these count categories are count class intervals or bins with upper and lower limits expressed in C. Count categories vary in width, overlap, and frequency of occurrence within the landings. The upper and lower limits of most count class intervals can be transformed to lower and upper limits (respectively) of class intervals expressed in pounds per shrimp tail, w, the reciprocal of C (i.e. w = 1/C). Age based stock assessments have relied on various algorithms to estimate numbers of shrimp from pounds landed within count categories. These algorithms required un- derlying explicit or implicit assumptions about the distribution of C or w. However, no attempts were made to assess the actual distribution of C or w. Therefore, validity of the algorithms and assumptions could not be determined. When different algorithms were applied to landings within the same size categories, they produced different estimates of numbers of shrimp. This paper demonstrates a method of simulating the distribution of w in reported biological year landings of shrimp. We used, as examples, landings of brown shrimp, Farfantepenaeus aztecus, from the northern Gulf of Mexico fishery in biological years 1986–2006. Brown shrimp biological year, Ti, is defined as beginning on 1 May of the same calendar year as Ti and ending on 30 April of the next calendar year, where subscript i is the place marker for biological year. Biological year landings encompass most if not all of the brown shrimp life cycle and life span. Simulated distributions of w reflect all factors influencing sizes of brown shrimp in the landings within a given biological year. Our method does not require a priori assumptions about the parent distributions of w or C, and it takes into account the variability in width, overlap, and frequency of occurrence of count categories within the landings. Simulated biological year distributions of w can be transformed to equivalent distributions of C. Our method may be useful in future testing of previously applied algorithms and development of new estimators based on statistical estimation theory and the underlying distribution of w or C. We also examine some applications of biological year distributions of w, and additional variables derived from them.
Resumo:
A hiperatividade locomotora e as alterações nos ritmos circadianos têm sido descritas em roedores e humanos expostos ao etanol durante o desenvolvimento. Considerando que a atividade locomotora em camundongos é conhecida por variar ao longo das fases do ciclo claro escuro, é possível que o fenótipo hiperativo resultante da exposição precoce ao etanol também varie em função da hora do dia. Além disso, é possível que a hiperatividade apresentada pelos indivíduos expostos ao etanol durante o desenvolvimento esteja associada com distúrbios no sistema de controle do ritmo circadiano. Neste estudo, avaliamos estas duas possibilidades realizando uma análise circadiana da atividade locomotora e da expressão dos genes de relógio de camundongos adolescentes expostos ao etanol durante o período de surto de crescimento cerebral. Para tanto, camundongos suíços criados e mantidos em um ciclo claro/escuro de 12h (luzes acesas às 2:00h, apagadas as 14:00h) foram injetados com etanol (5g/kg ip, grupo ETOH) ou um volume equivalente de solução salina (grupo SAL) em dias alternados do segundo ao oitavo dias pós-natais. No 30 dia pós-natal, os animais foram testados em campo aberto por 15 minutos em diferentes momentos do ciclo claro/escuro: durante a fase clara entre 6:00 e 7:30h e entre12:00 e 13:30h; durante a fase escura entre 18:00 e 19:30h e entre 0:00 e 01:30h. Durante a fase escura os testes foram realizados sob iluminação com luz vermelha. Após os testes comportamentais, alguns animais foram randomicamente selecionados para as análises de imunofluorescência da expressão dos genes PER 1, 2 e 3 no núcleo supraquiasmático. Ao longo dos seis primeiros minutos, a atividade locomotora dos animais testados durante o período claro não mudou significativamente ou apresentou um leve aumento e a dos animais testados no período escuro apresentou uma marcante redução. Além disso, o grupo de animais testados entre 00:00 e 1:30h apresentou a maior atividade locomotora e o grupo dos animais testados entre 12:00 e 13:30h apresentou a menor atividade locomotora. De modo importante, a exposição neonatal ao etanol promoveu hiperatividade locomotora apenas no grupo de animais testados entre 00:00 e 1:30h. Em relação aos genes de controle do ritmo circadiano, a exposição precoce ao etanol afetou apenas a expressão do gene Per1 que foi menor entre 18:00 e 19:30h. O fato de que a expressão dos genes de controle do ritmo circadiano foi alterada no meio da fase escura e que a hiperatividade locomotora foi observada apenas no final da fase escura é compatível com a hipótese de que a hiperatividade induzida pelo etanol pode estar associada com as perturbações de controle do ritmo circadiano.
Resumo:
In the 1500’s, the waters of Venezuela and to a lesser extent Colombia produced more natural pearls than any place ever produced in the world in any succeeding century. Atlantic pearl-oysters, Pinctata imbricata Röding 1798, were harvested almost entirely by divers. The pearls from them were exported to Spain and other European countries. By the end of the 1500’s, the pearl oysters had become much scarcer, and little harvesting took place during the 1600’s and 1700’s. Harvesting began to accelerate slowly in the mid 1800’s and has since continued but at a much lower rate than in the 1500’s. The harvesting methods have been hand collecting by divers until the early 1960’s, dredging from the 1500’s to the present, and hardhat diving from 1912 to the early 1960’s. Since the mid 1900’s, Japan and other countries of the western Pacific rim have inundated world markets with cultured pearls that are of better quality and are cheaper than natural pearls, and the marketing of natural pearls has nearly ended. The pearl oyster fishery in Colombia ended in the 1940’s, but it has continued in Venezuela with the fishermen selling the meats to support themselves; previously most meats had been discarded. A small quantity of pearls is now taken, and the fishery, which comprised about 3,000 fishermen in 1947, comprised about 300 in 2002.
Resumo:
One particular habitat type in the Middle Atlantic Bight is not well recognized among fishery scientists and managers, although it is will known and used by recreational and commercial fisheries. This habitat consists of a variety of hard-surface, elevated relief "reef" or reef-like environments that are widely distributed across the predominantly flat or undulating, sandy areas of the Bight and include both natural rocky areas and man-made structures, e.g. shipwrecks and artificial reefs. Although there are natural rock and shellfish reefs in southern New England coastal waters and estuaries throughout the Bight, most reef habitats in the region appear to be man-made reef habitat modification/creation may be increasing. Very little effort has been devoted to the study of this habitat's distribution, abundance, use by living marine resources and associated biological communities (except on estuarine oyster reefs) and fishery value or management. This poorly studied and surveyed habitat can provide fish refuge from trawls and can be a factor in studies of the distribution and abundance of a variety of reef-associated fishery resources. This review provides a preliminary summary of information found on relative distribution and abundance of reef habitat in the Bight, the living marine resources and biological communities that commonly use it, threats to this habitat and its biological resources, and the value or potential value of artificial reefs to fishery or habitat and its biological resources, and the value or potential value of artificial reefs to fishery or habitat managers. The purpose of the review is to initiate an awareness among resource managers about this habitat, its role in resource management, and the need for research.
Resumo:
Alaska plaice, Pleuronectes quadrituberculatus, is one of the major flatfishes in the eastern Bering Sea ecosystem and is most highly concentrated in the shallow continental shelf of the eastern Bering Sea. Annual commercial catches have ranged from less than 1,000 metric tons (t) in 1963 to 62,000 t in 1988. Alaska plaice is a relatively large flatfish averaging about 32 cm in length and 390 g in weight in commercial catches. They are distributed from nearshore waters to a depth of about 100 m in the eastern Bering Sea during summer, but move to deeper continental shelf waters in winter to escape sea ice and cold water temperatures. Being a long-lived species (>30 years), they have a relatively low natural mortality rate estimated at 0.20. Maturing at about age 7, Alaska plaice spawn from April through June on hard sandy substrates of the shelf region, primarily around the 100 m isobath. Prey items primarily include polychaetes and other marine worms. In comparison with other flatfish, Alaska plaice and rock sole, Pleuronectes bilineatus, have similar diets but different habitat preferences with separate areas of peak population density which may minimize interspecific competition. Yellowfin sole, Pleuronectes asper, while sharing similar habitat, differs from these two species because of the variety of prey items in its diet. Competition for food resources among the three species appears to be low. The resource has experienced light exploitation since 1963 and is currently in good condition. Based on the results of demersal trawl surveys and age-structured analyses, the exploitable biomass increased from 1971 through the mid-1980’s before decreasing to the 1997 level of 500,000 t. The recommended 1998 harvest level, Allowable Biological Catch, was calculated from the Baranov catch equation based on the FMSY harvest level and the projected 1997 biomass, resulting in a commercial harvest of 69,000 t, or about 16% of the estimated exploitable biomass.
Resumo:
Yellowfin sole, Pleuronectes asper, is the second most abundant flatfish in the North Pacific Ocean and is most highly concentrated in the eastern Bering Sea. It has been a target species in the eastern Bering Sea since the mid-1950's, initially by foreign distant-water fisheries but more recently by U.S. fisheries. Annual commercial catches since 1959 have ranged from 42,000 to 554,000 metric tons (t). Yellowfin sole is a relatively small flatfish averaging about 26 cm in length and 200 g in weight in commercial catches. It is distributed from nearshore waters to depths of about 100 m in the eastern Bering Sea in summer, but moves to deeper water in winter to escape sea ice. Yellowfin sole is a benthopelagic feeder. It is a longlived species (>20 years) with a correspondingly low natural mortality rate estimated at 0.12. After being overexploited during the early years of the fishery and suffering a substantial decline in stock abundance, the resource has recovered and is currently in excellent condition. The biomass during the 1980's may have been as high as, if not higher than, that at the beginning of the fishery. Based on results of demersal trawl surveys and two age structured models, the current exploitable biomass has been estimated to range between 1.9 and 2.6 million t. Appropriate harvest strategies were investigated under a range of possible recruitment levels. The recommended harvest level was calculated by multiplying the yield derived from the FOI harvest level (161 g at F = 0.14) hy an average recruitment value resulting in a commercial harvest of 276,900 t, or about 14% of the estimated exploitable biomass.
Resumo:
Biological implications of two managment options (the closed corridor and the recommended shortened season (Option 7) options) for the Atlantic menhaden, Brevoortia tyrannus, fishery are reported based on purse-seine landings and port sampling data from 1970 to 1984 and captain's daily fishing reports from 1978 to 1982. Large catches of age-O menhaden raise concern for growth overfishing. Area-specific yield-per-recruit analyses are used to investigate the biological consequences of these management options. The closed corridor option indicates coastwide gains in yield-per-recruit ranging from 0.3 to 7.2% depending on changes in fishing activity with most areas showing gains. The shortened fishing season indicates coastwide gains in yield per recruit ranging from O. 4 to 10.2% depending onf ishing year with most geographic areas showing gains. The shortened fishing season option offers the greatest gains when large numbers ofy oung menhaden would be caught late in the fishing year, while gains from the closed corridor option depend on how the fishing fleet responds to that management plan. The shortened season offers greater potential coastwide gains to the fishery, but also may result in greater losses to the North Carolina fall fishery. The analytical approach is applicable to the management of other coastal migratory fish stocks that fall under the Atlantic States Marine Fisheries Commission or other interstate management groups.
Resumo:
This is the River Dart Biological Survey from 10th June to 15th July 1968 by the Devon River Authority. This survey was undertaken to investigate the invertebrate bottom fauna of the river and to assess the condition of the river with regard to pollution. It describes the environmental conditions of the River Dart and the biological sampling method used, plus a brief conclusion of the survey. It also contains tables with the different species present and abundance on each sampling stations.