987 resultados para auditory masking
Resumo:
Adults show great variation in their auditory skills, such as being able to discriminate between foreign speech-sounds. Previous research has demonstrated that structural features of auditory cortex can predict auditory abilities; here we are interested in the maturation of 2-Hz frequency-modulation (FM) detection, a task thought to tap into mechanisms underlying language abilities. We hypothesized that an individual's FM threshold will correlate with gray-matter density in left Heschl's gyrus, and that this function-structure relationship will change through adolescence. To test this hypothesis, we collected anatomical magnetic resonance imaging data from participants who were tested and scanned at three time points: at 10, 11.5 and 13 years of age. Participants judged which of two tones contained FM; the modulation depth was adjusted using an adaptive staircase procedure and their threshold was calculated based on the geometric mean of the last eight reversals. Using voxel-based morphometry, we found that FM threshold was significantly correlated with gray-matter density in left Heschl's gyrus at the age of 10 years, but that this correlation weakened with age. While there were no differences between girls and boys at Times 1 and 2, at Time 3 there was a relationship between gray-matter density in left Heschl's gyrus in boys but not in girls. Taken together, our results confirm that the structure of the auditory cortex can predict temporal processing abilities, namely that gray-matter density in left Heschl's gyrus can predict 2-Hz FM detection threshold. This ability is dependent on the processing of sounds changing over time, a skill believed necessary for speech processing. We tested this assumption and found that FM threshold significantly correlated with spelling abilities at Time 1, but that this correlation was found only in boys. This correlation decreased at Time 2, and at Time 3 we found a significant correlation between reading and FM threshold, but again, only in boys. We examined the sex differences in both the imaging and behavioral data taking into account pubertal stages, and found that the correlation between FM threshold and spelling was strongest pre-pubertally, and the correlation between FM threshold and gray-matter density in left Heschl's gyrus was strongest mid-pubertally.
Resumo:
Auditory processing disorder (APD) is diagnosed when a patient presents with listening difficulties which can not be explained by a peripheral hearing impairment or higher-order cognitive or language problems. This review explores the association between auditory processing disorder (APD) and other specific developmental disorders such as dyslexia and attention-deficit hyperactivity disorder. The diagnosis and aetiology of APD are similar to those of other developmental disorders and it is well established that APD often co-occurs with impairments of language, literacy, and attention. The genetic and neurological causes of APD are poorly understood, but developmental and behavioural genetic research with other disorders suggests that clinicians should expect APD to co-occur with other symptoms frequently. The clinical implications of co-occurring symptoms of other developmental disorders are considered and the review concludes that a multi-professional approach to the diagnosis and management of APD, involving speech and language therapy and psychology as well as audiology, is essential to ensure that children have access to the most appropriate range of support and interventions.
Resumo:
Most contemporary models of spatial vision include a cross-oriented route to suppression (masking from a broadly tuned inhibitory pool), which is most potent at low spatial and high temporal frequencies (T. S. Meese & D. J. Holmes, 2007). The influence of this pathway can elevate orientation-masking functions without exciting the target mechanism, and because early psychophysical estimates of filter bandwidth did not accommodate this, it is likely that they have been overestimated for this corner of stimulus space. Here we show that a transient 40% contrast mask causes substantial binocular threshold elevation for a transient vertical target, and this declines from a mask orientation of 0° to about 40° (indicating tuning), and then more gently to 90°, where it remains at a factor of ∼4. We also confirm that cross-orientation masking is diminished or abolished at high spatial frequencies and for sustained temporal modulation. We fitted a simple model of pedestal masking and cross-orientation suppression (XOS) to our data and those of G. C. Phillips and H. R. Wilson (1984) and found the dependency of orientation bandwidth on spatial frequency to be much less than previously supposed. An extension of our linear spatial pooling model of contrast gain control and dilution masking (T. S. Meese & R. J. Summers, 2007) is also shown to be consistent with our results using filter bandwidths of ±20°. Both models include tightly and broadly tuned components of divisive suppression. More generally, because XOS and/or dilution masking can affect the shape of orientation-masking curves, we caution that variations in bandwidth estimates might reflect variations in processes that have nothing to do with filter bandwidth.
Cross-orientation masking is speed invariant between ocular pathways but speed dependent within them
Resumo:
In human (D. H. Baker, T. S. Meese, & R. J. Summers, 2007b) and in cat (B. Li, M. R. Peterson, J. K. Thompson, T. Duong, & R. D. Freeman, 2005; F. Sengpiel & V. Vorobyov, 2005) there are at least two routes to cross-orientation suppression (XOS): a broadband, non-adaptable, monocular (within-eye) pathway and a more narrowband, adaptable interocular (between the eyes) pathway. We further characterized these two routes psychophysically by measuring the weight of suppression across spatio-temporal frequency for cross-oriented pairs of superimposed flickering Gabor patches. Masking functions were normalized to unmasked detection thresholds and fitted by a two-stage model of contrast gain control (T. S. Meese, M. A. Georgeson, & D. H. Baker, 2006) that was developed to accommodate XOS. The weight of monocular suppression was a power function of the scalar quantity ‘speed’ (temporal-frequency/spatial-frequency). This weight can be expressed as the ratio of non-oriented magno- and parvo-like mechanisms, permitting a fast-acting, early locus, as befits the urgency for action associated with high retinal speeds. In contrast, dichoptic-masking functions superimposed. Overall, this (i) provides further evidence for dissociation between the two forms of XOS in humans, and (ii) indicates that the monocular and interocular varieties of XOS are space/time scale-dependent and scale-invariant, respectively. This suggests an image-processing role for interocular XOS that is tailored to natural image statistics—very different from that of the scale-dependent (speed-dependent) monocular variety.
Resumo:
The visual system dissects the retinal image into millions of local analyses along numerous visual dimensions. However, our perceptions of the world are not fragmentary, so further processes must be involved in stitching it all back together. Simply summing up the responses would not work because this would convey an increase in image contrast with an increase in the number of mechanisms stimulated. Here, we consider a generic model of signal combination and counter-suppression designed to address this problem. The model is derived and tested for simple stimulus pairings (e.g. A + B), but is readily extended over multiple analysers. The model can account for nonlinear contrast transduction, dilution masking, and signal combination at threshold and above. It also predicts nonmonotonic psychometric functions where sensitivity to signal A in the presence of pedestal B first declines with increasing signal strength (paradoxically dropping below 50% correct in two-interval forced choice), but then rises back up again, producing a contour that follows the wings and neck of a swan. We looked for and found these "swan" functions in four different stimulus dimensions (ocularity, space, orientation, and time), providing some support for our proposal.
Resumo:
Motor timing tasks have been employed in studies of neurodevelopmental disorders such as developmental dyslexia and ADHD, where they provide an index of temporal processing ability. Investigations of these disorders have used different stimulus parameters within the motor timing tasks which are likely to affect performance measures. Here we assessed the effect of auditory and visual pacing stimuli on synchronised motor timing performance and its relationship with cognitive and behavioural predictors that are commonly used in the diagnosis of these highly prevalent developmental disorders. Twenty- one children (mean age 9.6 years) completed a finger tapping task in two stimulus conditions, together with additional psychometric measures. As anticipated, synchronisation to the beat (ISI 329 ms) was less accurate in the visually paced condition. Decomposition of timing variance indicated that this effect resulted from differences in the way that visual and auditory paced tasks are processed by central timekeeping and associated peripheral implementation systems. The ability to utilise an efficient processing strategy on the visual task correlated with both reading and sustained attention skills. Dissociations between these patterns of relationship across task modality suggest that not all timing tasks are equivalent.
Resumo:
A sequence of constant-frequency tones can promote streaming in a subsequent sequence of alternating-frequency tones, but why this effect occurs is not fully understood and its time course has not been investigated. Experiment 1 used a 2.0-s-long constant-frequency inducer (10 repetitions of a low-frequency pure tone) to promote segregation in a subsequent, 1.2-s test sequence of alternating low- and high-frequency tones. Replacing the final inducer tone with silence substantially reduced reported test-sequence segregation. This reduction did not occur when either the 4th or 7th inducer was replaced with silence. This suggests that a change at the induction/test-sequence boundary actively resets build-up, rather than less segregation occurring simply because fewer inducer tones were presented. Furthermore, Experiment 2 found that a constant-frequency inducer produced its maximum segregation-promoting effect after only three tones—this contrasts with the more gradual build-up typically observed for alternating-frequency sequences. Experiment 3 required listeners to judge continuously the grouping of 20-s test sequences. Constant-frequency inducers were considerably more effective at promoting segregation than alternating ones; this difference persisted for ~10 s. In addition, resetting arising from a single deviant (longer tone) was associated only with constant-frequency inducers. Overall, the results suggest that constant-frequency inducers promote segregation by capturing one subset of test-sequence tones into an ongoing, preestablished stream, and that a deviant tone may reduce segregation by disrupting this capture. These findings offer new insight into the dynamics of stream segregation, and have implications for the neural basis of streaming and the role of attention in stream formation. (PsycINFO Database Record (c) 2013 APA, all rights reserved)
Resumo:
Sensory processing is a crucial underpinning of the development of social cognition, a function which is compromised in variable degree in patients with pervasive developmental disorders (PDD). In this manuscript, we review some of the most recent and relevant contributions, which have looked at auditory sensory processing derangement in PDD. The variability in the clinical characteristics of the samples studied so far, in terms of severity of the associated cognitive deficits and associated limited compliance, underlying aetiology and demographic features makes a univocal interpretation arduous. We hypothesise that, in patients with severe mental deficits, the presence of impaired auditory sensory memory as expressed by the mismatch negativity could be a non-specific indicator of more diffuse cortical deficits rather than causally related to the clinical symptomatology. More consistent findings seem to emerge from studies on less severely impaired patients, in whom increased pitch perception has been interpreted as an indicator of increased local processing, probably as compensatory mechanism for the lack of global processing (central coherence). This latter hypothesis seems extremely attractive and future trials in larger cohorts of patients, possibly standardising the characteristics of the stimuli are a much-needed development. Finally, specificity of the role of the auditory derangement as opposed to other sensory channels needs to be assessed more systematically using multimodal stimuli in the same patient group. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
How speech is separated perceptually from other speech remains poorly understood. Recent research indicates that the ability of an extraneous formant to impair intelligibility depends on the variation of its frequency contour. This study explored the effects of manipulating the depth and pattern of that variation. Three formants (F1+F2+F3) constituting synthetic analogues of natural sentences were distributed across the 2 ears, together with a competitor for F2 (F2C) that listeners must reject to optimize recognition (left = F1+F2C; right = F2+F3). The frequency contours of F1 − F3 were each scaled to 50% of their natural depth, with little effect on intelligibility. Competitors were created either by inverting the frequency contour of F2 about its geometric mean (a plausibly speech-like pattern) or using a regular and arbitrary frequency contour (triangle wave, not plausibly speech-like) matched to the average rate and depth of variation for the inverted F2C. Adding a competitor typically reduced intelligibility; this reduction depended on the depth of F2C variation, being greatest for 100%-depth, intermediate for 50%-depth, and least for 0%-depth (constant) F2Cs. This suggests that competitor impact depends on overall depth of frequency variation, not depth relative to that for the target formants. The absence of tuning (i.e., no minimum in intelligibility for the 50% case) suggests that the ability to reject an extraneous formant does not depend on similarity in the depth of formant-frequency variation. Furthermore, triangle-wave competitors were as effective as their more speech-like counterparts, suggesting that the selection of formants from the ensemble also does not depend on speech-specific constraints.
Resumo:
The rhythm created by spacing a series of brief tones in a regular pattern can be disguised by interleaving identical distractors at irregular intervals. The disguised rhythm can be unmasked if the distractors are allocated to a separate stream from the rhythm by integration with temporally overlapping captors. Listeners identified which of 2 rhythms was presented, and the accuracy and rated clarity of their judgment was used to estimate the fusion of the distractors and captors. The extent of fusion depended primarily on onset asynchrony and degree of temporal overlap. Harmonic relations had some influence, but only an extreme difference in spatial location was effective (dichotic presentation). Both preattentive and attentionally driven processes governed performance. (PsycINFO Database Record (c) 2012 APA, all rights reserved)
Resumo:
A sequence of constant-frequency tones can promote streaming in a subsequent sequence of alternating-frequency tones, but why this effect occurs is not fully understood and its time course has not been investigated. Experiment 1 used a 2.0-s-long constant-frequency inducer (10 repetitions of a low-frequency pure tone) to promote segregation in a subsequent, 1.2-s test sequence of alternating low- and high-frequency tones. Replacing the final inducer tone with silence substantially reduced reported test-sequence segregation. This reduction did not occur when either the 4th or 7th inducer was replaced with silence. This suggests that a change at the induction/test-sequence boundary actively resets build-up, rather than less segregation occurring simply because fewer inducer tones were presented. Furthermore, Experiment 2 found that a constant-frequency inducer produced its maximum segregation-promoting effect after only three tones—this contrasts with the more gradual build-up typically observed for alternating-frequency sequences. Experiment 3 required listeners to judge continuously the grouping of 20-s test sequences. Constant-frequency inducers were considerably more effective at promoting segregation than alternating ones; this difference persisted for ~10 s. In addition, resetting arising from a single deviant (longer tone) was associated only with constant-frequency inducers. Overall, the results suggest that constant-frequency inducers promote segregation by capturing one subset of test-sequence tones into an ongoing, preestablished stream, and that a deviant tone may reduce segregation by disrupting this capture. These findings offer new insight into the dynamics of stream segregation, and have implications for the neural basis of streaming and the role of attention in stream formation. (PsycINFO Database Record (c) 2013 APA, all rights reserved)
Resumo:
How speech is separated perceptually from other speech remains poorly understood. Recent research indicates that the ability of an extraneous formant to impair intelligibility depends on the variation of its frequency contour. This study explored the effects of manipulating the depth and pattern of that variation. Three formants (F1+F2+F3) constituting synthetic analogues of natural sentences were distributed across the 2 ears, together with a competitor for F2 (F2C) that listeners must reject to optimize recognition (left = F1+F2C; right = F2+F3). The frequency contours of F1 - F3 were each scaled to 50% of their natural depth, with little effect on intelligibility. Competitors were created either by inverting the frequency contour of F2 about its geometric mean (a plausibly speech-like pattern) or using a regular and arbitrary frequency contour (triangle wave, not plausibly speech-like) matched to the average rate and depth of variation for the inverted F2C. Adding a competitor typically reduced intelligibility; this reduction depended on the depth of F2C variation, being greatest for 100%-depth, intermediate for 50%-depth, and least for 0%-depth (constant) F2Cs. This suggests that competitor impact depends on overall depth of frequency variation, not depth relative to that for the target formants. The absence of tuning (i.e., no minimum in intelligibility for the 50% case) suggests that the ability to reject an extraneous formant does not depend on similarity in the depth of formant-frequency variation. Furthermore, triangle-wave competitors were as effective as their more speech-like counterparts, suggesting that the selection of formants from the ensemble also does not depend on speech-specific constraints. © 2014 The Author(s).
Resumo:
Three experiments investigated the dynamics of auditory stream segregation. Experiment 1 used a 2.0-s constant-frequency inducer (10 repetitions of a low-frequency pure tone) to promote segregation in a subsequent, 1.2-s test sequence of alternating low- and high-frequency tones. Replacing the final inducer tone with silence reduced reported test-sequence segregation substantially. This reduction did not occur when either the 4th or 7th inducer was replaced with silence. This suggests that a change at the induction/test-sequence boundary actively resets buildup, rather than less segregation occurring simply because fewer inducer tones were presented. Furthermore, Experiment 2 found that a constant-frequency inducer produced its maximum segregation-promoting effect after only 3 tone cycles - this contrasts with the more gradual build-up typically observed for alternating sequences. Experiment 3 required listeners to judge continuously the grouping of 20-s test sequences. Constant-frequency inducers were considerably more effective at promoting segregation than alternating ones; this difference persisted for ∼10 s. In addition, resetting arising from a single deviant (longer tone) was associated only with constant-frequency inducers. Overall, the results suggest that constant-frequency inducers promote segregation by capturing one subset of test-sequence tones into an on-going, pre-established stream and that a deviant tone may reduce segregation by disrupting this capture. © 2013 Acoustical Society of America.