946 resultados para antibody specificity
Resumo:
Two families of membrane enzymes catalyze the initiation of the synthesis of O-antigen lipopolysaccharide. The Salmonella enterica Typhimurium WbaP is a prototypic member of one of these families. We report here the purification and biochemical characterization of the WbaP C-terminal (WbaP(CT)) domain harboring one putative transmembrane helix and a large cytoplasmic tail. An N-terminal thioredoxin fusion greatly improved solubility and stability of WbaP(CT) allowing us to obtain highly purified protein. We demonstrate that WbaP(CT) is sufficient to catalyze the in vitro transfer of galactose (Gal)-1-phosphate from uridine monophosphate (UDP)-Gal to the lipid carrier undecaprenyl monophosphate (Und-P). We optimized the in vitro assay to determine steady-state kinetic parameters with the substrates UDP-Gal and Und-P. Using various purified polyisoprenyl phosphates of increasing length and variable saturation of the isoprene units, we also demonstrate that the purified enzyme functions highly efficiently with Und-P, suggesting that the WbaP(CT) domain contains all the essential motifs to catalyze the synthesis of the Und-P-P-Gal molecule that primes the biosynthesis of bacterial surface glycans.
Burkholderia cenocepacia BC2L-C Is a Super Lectin with Dual Specificity and Proinflammatory Activity
Resumo:
Lectins and adhesins are involved in bacterial adhesion to host tissues and mucus during early steps of infection. We report the characterization of BC2L-C, a soluble lectin from the opportunistic pathogen Burkholderia cenocepacia, which has two distinct domains with unique specificities and biological activities. The N-terminal domain is a novel TNF-alpha-like fucose-binding lectin, while the C-terminal part is similar to a superfamily of calcium-dependent bacterial lectins. The C-terminal domain displays specificity for mannose and L-glycero-D-manno-heptose. BC2L-C is therefore a superlectin that binds independently to mannose/heptose glycoconjugates and fucosylated human histo-blood group epitopes. The apo form of the C-terminal domain crystallized as a dimer, and calcium and mannose could be docked in the binding site. The whole lectin is hexameric and the overall structure, determined by electron microscopy and small angle X-ray scattering, reveals a flexible arrangement of three mannose/heptose-specific dimers flanked by two fucose-specific TNF-alpha-like trimers. We propose that BC2L-C binds to the bacterial surface in a mannose/heptose-dependent manner via the C-terminal domain. The TNF-alpha-like domain triggers IL-8 production in cultured airway epithelial cells in a carbohydrate-independent manner, and is therefore proposed to play a role in the dysregulated proinflammatory response observed in B. cenocepacia lung infections. The unique architecture of this newly recognized superlectin correlates with multiple functions including bacterial cell cross-linking, adhesion to human epithelia, and stimulation of inflammation.
Resumo:
The PglB oligosaccharyltransferase (OTase) of Campylobacter jejuni can be functionally expressed in Escherichia coli, and its relaxed oligosaccharide substrate specificity allows the transfer of different glycans from the lipid carrier undecaprenyl pyrophosphate to an acceptor protein. To investigate the substrate specificity of PglB, we tested the transfer of a set of lipid-linked polysaccharides in E. coli and Salmonella enterica serovar Typhimurium. A hexose linked to the C-6 of the monosaccharide at the reducing end did not inhibit the transfer of the O antigen to the acceptor protein. However, PglB required an acetamido group at the C-2. A model for the mechanism of PglB involving this functional group was proposed. Previous experiments have shown that eukaryotic OTases have the same requirement, suggesting that eukaryotic and prokaryotic OTases catalyze the transfer of oligosaccharides by a conserved mechanism. Moreover, we demonstrated the functional transfer of the C. jejuni glycosylation system into S. enterica. The elucidation of the mechanism of action and the substrate specificity of PglB represents the foundation for engineering glycoproteins that will have an impact on biotechnology.
Resumo:
We recently reported a novel genetic locus located in the sbcB-his region of the chromosomal map of Escherichia coli K-12 which directs the expression of group 6-positive phenotype in Shigella flexneri lipopolysaccharide, presumably due to the transfer of O-acetyl groups onto rhamnose residues of the S. flexneri O-specific polysaccharide (Z. Yao, H. Liu, and M. A. Valvano, J. Bacteriol. 174:7500-7508, 1992). In this study, we identified the genetic region encoding group 6 specificity as part of the rfb gene cluster of E. coli K-12 strain W3110 and established the DNA sequence of most of this cluster. The rfbBDACX block of genes, located in the upstream region of the rfb cluster, was found to be strongly conserved in comparison with the corresponding region in Shigella dysenteriae type 1 and Salmonella enterica. Six other genes, four of which were shown to be essential for the expression of group 6 reactivity in S. flexneri serotypes Y and 4a, were identified downstream of rfbX. One of the remaining two genes showed similarities with rfc (O-antigen polymerase) of S. enterica serovar typhimurium, whereas the other, located in the downstream end of the cluster next to gnd (gluconate-6-phosphate dehydrogenase), had an IS5 insertion. Recently, it has been reported that the IS5 insertion mutation (rfb-50) can be complemented, resulting in the formation of O16-specific polysaccharide by E. coli K-12 (D. Liu and P. R. Reeves, Microbiology 140:49-57, 1994). We present immunochemical evidence suggesting that S. flexneri rfb genes also complement the rfb-50 mutation; in the presence of rfb genes of E. coli K-12, S. flexneri isolates express O16-specific polysaccharide which is also acetylated in its rhamnose residues, thereby eliciting group 6 specificity.
Resumo:
Few patients with Behçet's syndrome have gastrointestinal ulceration. Such patients are difficult to treat and have a higher mortality. Faced with refractory symptoms in two patients with intestinal Behçet's, we used the tumour necrosis factor alpha (TNF-alpha) monoclonal antibody infliximab to induce remission. Both women (one aged 27 years, the other 30 years) presented with orogenital ulceration, pustular rash, abdominal pain, bloody diarrhoea due to colonic ulceration, weight loss, and synovitis. One had thrombophlebitis, digital vasculitis, perianal fistula, and paracolic abscess; the other had conjunctivitis and an ulcer in the natal cleft. Treatment with prednisolone, methyl prednisolone, and thalidomide in one and prednisolone, colchicine, and cyclosporin in the other was ineffective. After full discussion, infliximab (3 mg/kg, dose reduced because of recent sepsis in one, and 5 mg/kg in the other) was administered. Within 10 days the ulcers healed, with resolution of bloody diarrhoea and all extraintestinal manifestations. A second infusion of infliximab was necessary eight weeks later in one case, followed by sustained (>15 months) remission on low dose thalidomide. Remission was initially sustained for 12 months in the other but thalidomide had to be stopped due to intolerance, and a good response to retreatment lasted only 12 weeks without immunosuppression, before a third infusion. The cause of Behçet's syndrome is unknown but peripheral blood CD45 gammadelta T cells in Behçet's produce >50-fold more TNF-alpha than controls when stimulated with phorbol myristate acetate and anti-CD3. Infliximab could have a role for inducing remission in Behçet's syndrome.
Resumo:
Three hundred and seventy-six patients attending their general practitioner with cutaneous warts at five health centres in Northern Ireland were screened for human papilloma virus (HPV) types 1 and 2 IgM antibody using an indirect immunofluorescence test. Eight-eight (23.4%) patients were positive for HPV type 1 IgM and 156 (41.5%) for HPV type 2 IgM. HPV 1 IgM antibody was significantly more likely to be associated with plantar warts than warts elsewhere (P less than 0.0001). HPV 2 IgM was present in 45 (34.1%) patients with plantar warts and 99 (45.6%) patients with warts at other sites (P = 0.1). Evidence of multiple infection by HPV types 1 and 2 was demonstrated by the finding of HPV 1 and 2 IgM antibodies in the sera of 16 (4.3%). HPV 4 was found in only 1 out of 30 biopsies and HPV 4 IgM was undetectable in 50 randomly chosen sera.
Resumo:
We assessed ten trophodynamic indicators of ecosystem status for their sensitivity and specificity to fishing management using a size-resolved multispecies fish community model. The responses of indicators to fishing depended on effort and the size selectivity (sigmoid or Gaussian) of fishing mortality. The highest specificity against sigmoid (trawl-like) size selection was seen from inverse fishing pressure and the large fish indicator, but for Gaussian size selection, the large species indicator was most specific. Biomass, mean trophic level of the community and of the catch, and fishing in balance had the lowest specificity against both size selectivities. Length-based indicators weighted by biomass, rather than abundance, were more sensitive and specific to fishing pressure. Most indicators showed a greater response to sigmoid than Gaussian size selection. Indicators were generally more sensitive at low levels of effort because of nonlinear sensitivity in trophic cascades to fishing mortality. No single indicator emerged as superior in all respects, so given available data, multiple complementary indicators are recommended for community monitoring in the ecosystem approach to fisheries management.
Resumo:
Solid-phase extraction (SPE) and direct competitive chemiluminescence enzyme immunoassay (dcCL-EIA) were combined for the detection of organophosphorus pesticides (OPs) in environmental water samples. dcCL-EIA based on horseradish peroxidase labeled with a broad-specificity monoclonal antibody against OPs was developed, and the effects of several physicochemical parameters on dcCL-EIA performance were studied. SPE was used for the pretreatment of water samples to remove interfering substances and to concentrate the OP analytes. The coupling of SPE and dcCL-EIA can detect seven OPs (parathion, coumaphos, phoxim, quinalphos, triazophos, dichlofenthion, and azinphos-ethyl) with the limit of quantitation below 0.1 ng/mL. The recoveries of OPs from spiked water samples ranged from 62.5% to 131.7% by SPE-dcCL-EIA and 69.5% to 112.3% by SPE-HPLC-MS/MS. The screening of OP residues in real-world environmental water samples by the developed SPE-dcCL-EIA and their confirmatory analysis using SPE-HPLC-MS/MS demonstrated that the assay is ideally suited as a monitoring method for OP residues prior to chromatographic analysis.
Resumo:
Autoimmune vasculitis is characterized by the presence of autoantibodies, particularly anti-neutrophil cytoplasmic antibodies (ANCA) and anti-nuclear antibodies (ANA), in patient sera. These autoantibodies have an incompletely understood role in development of vascular injury. The expression or up-regulation of cell adhesion molecules is an early phase in the development of an inflammatory vascular lesion. Autoantibody-positive sera from patients with vasculitis were assessed for their ability to modulate adhesion molecule expression by human umbilical vein endothelial cells (HUVEC). Autoantibody-positive serum samples from 11 out of 21 patients with primary vasculitis produced substantial up-regulation of ICAM-1 on HUVEC. Autoantibody-negative samples did not produce adhesion molecule up-regulation. Up-regulation of adhesion molecules on HUVEC was observed with samples positive for ANA, a phenomenon not previously reported. Preincubation of the sera with purified antigens recognized by ANCA failed to block this activation. In addition, MoAbs to ANCA antigens were ineffective at inducing ICAM-1 up-regulation, suggesting that activation is independent of the molecular specificity of the antibody. This capacity of ANCA- and ANA-positive sera to up-regulate adhesion molecules on endothelial cells may be a factor in the vessel wall inflammation seen in ANCA-associated vasculitis.
Resumo:
An optimised indirect peroxidase-anti-peroxidase immunohistochemical technique was used to detect endogenous biotin in frozen tissue sections from biotin-supplemented and biotin-depleted pigs and chickens. A monoclonal anti-biotin antibody was used as primary antibody in this technique. Immunoreactive biotin was detected in many tissues of both species including liver, kidney, pancreas, adipose tissue, adrenal gland, testis, brain, choroid plexus, cardiac and skeletal muscle, epithelium of the respiratory and digestive systems, skin and lymphoid tissues. The specificity of immunostaining for biotin was confirmed by the finding of reduced staining intensities in tissues of biotin-depleted animals compared to those of biotin-supplemented animals. The results of this study suggest that biotin has metabolic functions in a wider range of tissues than previously known. They also indicate that endogenous tissue biotin should be considered as a source of false positive staining when immunohistochemical or histochemical techniques which use avidin or streptavidin reagents or anti-biotin antibodies as components of the detection system, are applied to tissue sections.
Resumo:
A sensitive and specific monoclonal ELISA for the determination of tissue bound furazolidone metabolite 3-amino-2-oxazolidinone (AOZ) is described. The procedure enables the detection of AOZ in matrix supernatant after homogenisation, protease treatment, acid hydrolysis and derivatisation of AOZ released from the tissue by o-nitrobenzaldehyde. The formed p-nitrophenyl 3-amino-2-oxazolidinone (NPAOZ) is determined by ELISA calibrated with matrix-matched standards in the concentration range of 0.05-5.0 mu g l(-1). The assay was validated according to criteria set down by Commission Decision 2002/657/EC for the performance and validation of analytical methods for chemical residues. Detection capability, set on the basis of acceptance of no false negative results, was 0.4 mu g kg(-1) for shrimp, poultry, beef and pork muscle. This sensitivity approaches the established confirmatory LC-MS/MS able to quantify tissue-bound AOZ at levels as low as 0.3 mu g kg(-1). An excellent correlation of results obtained by ELISA and LC/MS-MS within the concentration range 0-32.1 mu g kg(-1) was found in the naturally contaminated shrimp samples (r = 0.999, n = 8). A similar con-elation was found for the incurred poultry samples within the concentration range of 0-10.5 mu g kg(-1) (r = 0.99, n = 8). (c) 2005 Elsevier B.V All rights reserved.
Resumo:
3-amino-2-oxazolidinone (AOZ) is a tissue bound toxic metabolite derived from the nitrofuran antibiotic, furazolidone. AOZ is detected in the derivatised form of 3-{[(2-nitrophenyl) methylene]amino}-2-oxazolidinone (NP AOZ). 3-{[( 3- carboxyphenyl)-methylene]amino-2-oxazolidinone (CP AOZ) was used as the immunising hapten for the production of monoclonal antibodies against NP AOZ. Monoclonal antibodies were produced using hybridomas from the fusion of murine myeloma cells and spleen cells isolated from BALB/c mice immunised with CP AOZ-ethylenediamine-human serum albumin (CP AOZ-ed-HSA). The antibody production in ascitic fluids from clones 3B8/2B9 and 2D11/A4 was monitored during a 16 month period. Repeated cultures of these hybridomas, followed by injection into mice and cloning did not change the assay parameters. Clone 2D11/A4 exhibited long term stability in antibody production throughout the experiment whereas clone 3B8/2B9 demonstrated variability in particular antibody yields whilst retaining assay sensitivity. Reasons for this production variability in clones are discussed. In an optimised direct ELISA format, the antibodies exhibited a 50% binding inhibition in the range of 0.52-1.15 ng/ml with NP AOZ (0.22-0.50 ng/ml, respective AOZ equivalents) and showed high specificity towards this analyte. The sensitivity of monoclonal antibodies incorporated into the ELISA is compatible with the European Union MRLP and is currently in use for routine analysis.
Resumo:
A heterologous competitive indirect enzyme-linked immunosorbent assay (ciELISA) for the determination of the furaltadone metabolite 3-amino-5-morpholinomethyl-2-oxazolidinone (AMOZ) was developed. AMOZ was derivatised with 2-(4-formylphenoxy) acetic acid or 2-(3-formylphenoxy) acetic acid to obtain two novel immunizing haptens. The ability of these haptens in producing specific polyclonal antibodies against the nitrophenyl derivative of AMOZ (NPAMOZ) was compared with that of traditional immunizing haptens (derivatised AMOZ with 3-carboxybenzaldehyle or 4-carboxybenzaldehyle). The results indicated that the novel immunizing haptens were able to produce antibodies with almost a two-fold improvement in sensitivity of the ciELISA for NPAMOZ in comparison with the existing antibody based ELISAs. The differences in sensitivity were explained by the molecular modeling of the lowest energy conformations of NPAMOZ and the haptens. Another novel hapten, derivatised AMOZ with 2-oxoacetic acid, was synthesized and used as a heterologous coating hapten. The results showed that this strategy of using only a partial structure of the target molecule as the coating hapten was able to obtain a two to three-fold improvement in sensitivity. This study provided a modern approach for the development of an immunoassay with improved sensitivity for the metabolites of nitrofuran antibiotics. © 2012 Elsevier B.V. All rights reserved.