957 resultados para anion exchange capacity


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Chemical speciation in foodstuffs is of uttermost importance since it is nowadays recognized that both toxicity and bioavailability of an element depend on the chemical form in which the element is present. Regarding arsenic, inorganic species are classified as carcinogenic while organic arsenic, such as arsenobetaine (AsB) or arsenocholine (AsC), is considered less toxic or even non-toxic. Coupling a High Performance Liquid Chromatographer (HPLC) with an Inductively Coupled Plasma Mass Spectrometer (ICP-MS) combines the power of separation of the first with the selectivity and sensitivity of the second. The present work aims at developing a method, using HPLC-ICP-MS technique, to identify and quantify the chemical species of arsenic present in two food matrices, rice and fish. Two extraction methods, ultrasound and microwave, and different settings were studied. The best method was chosen based on recovery percentages. To ensure that no interconversion of species was occurring, individual spikes of each species of arsenic were made in both matrices and recovery rates were calculated. To guaranty accurate results reference material BCR-627 TUNA FISH, containing certified values for AsB and DMA, was analyzed. Chromatographic separation was achieved using an anion exchange column, HAMILTON-PRP X-100, which allowed to separate the four arsenic species for which standards were available (AsB, dimethylarsenic (DMA), arsenite (AsIII), arsenate (AsV). The mobile phase was chosen based on scientific literature and adjusted to laboratory conditions. Different gradients were studied. As a result we verified that the arsenic species present in both matrices were not the same. While in fish 90% of the arsenic present was in the form of arsenobetaine, in rice 80% of arsenic was present as DMA and 20% as inorganic arsenic.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Since the first description of sulfated polysaccharides from seaweeds, the biological activities of these compounds have been evaluated under different aspects and experimental procedures. Among the broad biological activities presented by seaweed polysaccharides, anticoagulant action appears as a promising function. In this present study we have obtained sulfated polysaccharides from the green seaweed Codium isthmocladium by proteolytic digestion, followed by separation into five fractions (0.3, 0.5, 0.7, 0.9 and 1.2) by sequential acetone precipitation. The chemical analyses have demonstrated that all fractions are composed mainly by sulfated polysaccharides. The anticoagulant activity of these fractions was determined by activated partial thromboplastin time (aPTT) and prothrombin time test (PT) using citrate normal human plasma. None fraction has shown anticoagulant activity by PT test. Furthermore, all of them have shown anticoagulant activity by aPTT test. These results indicated that the molecular targets of these sulfated polysaccharides are mainly in the intrinsic via of the coagulation cascade. Agarose gel electrophoresis in 1,3-diaminopropane acetate buffer, pH 9.0, stained with 0.1% toluidine blue showed the presence of two or three bands in several fractions while the fraction 0.9 showed a single spot. By anion exchange chromatography, the acid polysaccharides from the 0.9 acetone fraction were separated into two new fractions eluted respectively with 2.0 and 3.0 M NaCl. These compounds showed a molecular weight of 6.4 and 7.4 kDa respectively. Chemical analyses and infrared spectroscopy showed that Gal 1 and Gal 2 are sulfated homogalactans and differ one from the other in degree and localization of sulfate groups. aPPT test demonstrated that fractions 2,0 and 3,0M (Gal1 and Gal 2, respectively) have anticoagulant activity. This is the first time that anticoagulant sulfated homogalatans have been isolated from green algae. To prolong the coagulation time to double the baseline value in the aPTT, the required amount of sulfated galactan 1 (6,3mg) was similar to low molecular heparin Clexane®, whereas only 0,7mg of sulfated galactan 2 was needed to obtain the same effect. Sulfated galactan 2 in high doses (250mg) induces platelet aggregation. These results suggest that these galactans from C. isthmocladum have a potential application as an anticoagulant drug

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The textile industry generates a large volume of high organic effluent loading whoseintense color arises from residual dyes. Due to the environmental implications caused by this category of contaminant there is a permanent search for methods to remove these compounds from industrial waste waters. The adsorption alternative is one of the most efficient ways for such a purpose of sequestering/remediation and the use of inexpensive materials such as agricultural residues (e.g., sugarcane bagasse) and cotton dust waste (CDW) from weaving in their natural or chemically modified forms. The inclusion of quaternary amino groups (DEAE+) and methylcarboxylic (CM-) in the CDW cellulosic structure generates an ion exchange capacity in these formerly inert matrix and, consequently, consolidates its ability for electrovalent adsorption of residual textile dyes. The obtained ionic matrices were evaluated for pHpcz, the retention efficiency for various textile dyes in different experimental conditions, such as initial concentration , temperature, contact time in order to determine the kinetic and thermodynamic parameters of adsorption in batch, turning comprehensive how does occur the process, then understood from the respective isotherms. It was observed a change in the pHpcz for CM--CDW (6.07) and DEAE+-CDW (9.66) as compared to the native CDW (6.46), confirming changes in the total surface charge. The ionized matrices were effective for removing all evaluated pure or residual textile dyes under various tested experimental conditions. The kinetics of the adsorption process data had best fitted to the model a pseudosecond order and an intraparticle diffusion model suggested that the process takes place in more than one step. The time required for the system to reach equilibrium varied according to the initial concentration of dye, being faster in diluted solutions. The isotherm model of Langmuir was the best fit to the experimental data. The maximum adsorption capacity varied differently for each tested dye and it is closely related to the interaction adsorbent/adsorbate and dye chemical structure. Few dyes obtained a linear variation of the balance ka constant due to the inversion of temperature and might have influence form their thermodynamic behavior. Dyes that could be evaluated such as BR 18: 1 and AzL, showed features of an endothermic adsorption process (ΔH° positive) and the dye VmL presented exothermic process characteristics (ΔH° negative). ΔG° values suggested that adsorption occurred spontaneously, except for the BY 28 dye, and the values of ΔH° indicated that adsorption occurred by a chemisorption process. The reduction of 31 to 51% in the biodegradability of the matrix after the dye adsorption means that they must go through a cleaning process before being discarded or recycled, and the regeneration test indicates that matrices can be reused up to five times without loss of performance. The DEAE+-CDW matrix was efficient for the removal of color from a real textile effluent reaching an UV-Visible spectral area decrease of 93% when applied in a proportion of 15 g ion exchanger matrix L-1 of colored wastewater, even in the case of the parallel presence of 50 g L-1 of mordant salts in the waste water. The wide range of colored matter removal by the synthesized matrices varied from 40.27 to 98.65 mg g-1 of ionized matrix, obviously depending in each particular chemical structure of the dye upon adsorption.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Seeds from legumes including the Glycine max are known to be a rich source of protease inhibitors. The soybean Kunitz trypsin inhibitor (SKTI) has been well characterised and has been found to exhibit many biological activities. However its effects on inflammatory diseases have not been studied to date. In this study, SKTI was purified from a commercial soy fraction, enriched with this inhibitor, using anion exchange chromatography Resource Q column. The purified protein was able to inhibit human neutrophil elastase (HNE) and bovine trypsin. . Purified SKTI inhibited HNE with an IC50 value of 8 µg (0.3 nM). At this concentration SKTI showed neither cytotoxic nor haemolytic effects on human blood cell populations. SKTI showed no deleterious effects on organs, blood cells or the hepatic enzymes alanine amine transferase (ALT) and aspartate amino transferase (AST) in mice model of acute systemic toxicity. Human neutrophils incubated with SKTI released less HNE than control neutrophils when stimulated with PAF or fMLP (83.1% and 70% respectively). These results showed that SKTI affected both pathways of elastase release by PAF and fMLP stimuli, suggesting that SKTI is an antagonist of PAF/fMLP receptors. In an in vivo mouse model of acute lung injury, induced by LPS from E. coli, SKTI significantly suppressed the inflammatory effects caused by elastase in a dose dependent manner. Histological sections stained by hematoxylin/eosin confirmed this reduction in inflammation process. These results showed that SKTI could be used as a potential pharmacological agent for the therapy of many inflammatory diseases

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hardpans (plough/hoe pans) are commonly believed to restrict plant root growth and crop yields under conventional small-scale agriculture in sub-Saharan Africa. This study questions the notion of widespread hardpans in Zambia and their remedy under conservation tillage. Soil penetration resistance was measured in 8x12 grids, covering 80 cm wide and 60 cm deep profiles in 32 soil pits. Large and fine maize roots were counted in 8x6 grids. Soil samples from mid-rows were analysed for pH, exchangeable H+, exchangeable Al3+, cation exchange capacity, total N and extractable P (Bray 1) at six depths from 0-10 to 50-60 cm. Cultivation-induced hardpans were not detected. Soils under conservation tillage were more compact at 5 cm depth than soils under conventional tillage. No differences in root distributions between conservation and conventional tillage were found. Maize ( Zea mays L. ) roots were largely confined to a relatively small soil volume of about 30 cm x 30 cm x 30 cm. Root growth appeared to be restricted by a combination of low concentrations of N and P. Soil acidity and Al saturation appeared to play a minor role in root distribution. L-shaped taproots in soils under manual tillage reported earlier were not necessarily due to hardpans, but may rather be caused by temporarily dry, impenetrable subsoils early in the rain season. There is no scientific basis for the recommendation given to farmers by agricultural extension workers to “break the hardpan” in fields under manual or animal tillage in the study areas.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The land suitability evaluation is used to establish land zonings for agriculture activities. Geographic information systems (GIS) are useful for integrating different attributes necessaries to define apt and not apt lands. The present study had as main objective to describe procedures to define land suitability using GIS tools, soils maps and data soils profiles data, emphasizing procedures to define soil atributes. The area studied was the watershed of Córrego Espraiado, Ribeirão Preto-SP, located on the recharging area of the Guarani Aquifer, with approximately 4,130 ha and predominance of sugar cane culture. The database project was developed using the GIS Idrisi 32. The land suitability evaluation was done considering the intensive agricultural production system predominant in the watershed, adjusted for the vulnerability of the areas of recharge and for the methodology of GIS tools. Numerical terrain models (NTM) had been constructed for cation exchange capacity, basis saturation, clay content and silt+clay content using kriging (geostatistical interpolator), and for aluminum saturation using the inverse-square-distance. Boolean operations for handling geographic fields (thematic maps and NTM) to produce information plans are described and a land suitability map obtained by GIS tools is presented, indicating that 85% of watershed lands are apt to annual cultures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Effects of different forestry covers - “mata de panda” (MP), Pinus patula (PP) Eucalyptus grandis (EG) and Grevillea robusta (GR) - installed between 1965 and 1968 in the Estação Experimental Agrícola da Chianga (Huambo, Angola), on chemical properties of Ferrallitic Soils were assessed up to 30 cm depth, as compared to those observed in nearby conventional agricultural fields. Only the soils of the areas with EG and GR showed a clear improvement in their reaction, content of organic carbon and of extractable non-acid cations and effective cation exchange capacity, usually up to 10 cm depth. The improvement associated with “mata de panda” was less pronounced and that of PP plantations was negligible or nil. The recover capacity of soil fertility may depend on the nature of tree cover as well as on the soil characteristics itself. Results also indicate that the low soil capacity to retain cations exhibited by soils of the Planalto Central of Angola can be increased through both acidity correction and increasing the content of soil organic matter

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Since the first description of sulfated polysaccharides from seaweeds, the biological activities of these compounds have been evaluated under different aspects and experimental procedures. Among the broad biological activities presented by seaweed polysaccharides, anticoagulant action appears as a promising function. In this present study we have obtained sulfated polysaccharides from the green seaweed Codium isthmocladium by proteolytic digestion, followed by separation into five fractions (0.3, 0.5, 0.7, 0.9 and 1.2) by sequential acetone precipitation. The chemical analyses have demonstrated that all fractions are composed mainly by sulfated polysaccharides. The anticoagulant activity of these fractions was determined by activated partial thromboplastin time (aPTT) and prothrombin time test (PT) using citrate normal human plasma. None fraction has shown anticoagulant activity by PT test. Furthermore, all of them have shown anticoagulant activity by aPTT test. These results indicated that the molecular targets of these sulfated polysaccharides are mainly in the intrinsic via of the coagulation cascade. Agarose gel electrophoresis in 1,3-diaminopropane acetate buffer, pH 9.0, stained with 0.1% toluidine blue showed the presence of two or three bands in several fractions while the fraction 0.9 showed a single spot. By anion exchange chromatography, the acid polysaccharides from the 0.9 acetone fraction were separated into two new fractions eluted respectively with 2.0 and 3.0 M NaCl. These compounds showed a molecular weight of 6.4 and 7.4 kDa respectively. Chemical analyses and infrared spectroscopy showed that Gal 1 and Gal 2 are sulfated homogalactans and differ one from the other in degree and localization of sulfate groups. aPPT test demonstrated that fractions 2,0 and 3,0M (Gal1 and Gal 2, respectively) have anticoagulant activity. This is the first time that anticoagulant sulfated homogalatans have been isolated from green algae. To prolong the coagulation time to double the baseline value in the aPTT, the required amount of sulfated galactan 1 (6,3mg) was similar to low molecular heparin Clexane®, whereas only 0,7mg of sulfated galactan 2 was needed to obtain the same effect. Sulfated galactan 2 in high doses (250mg) induces platelet aggregation. These results suggest that these galactans from C. isthmocladum have a potential application as an anticoagulant drug

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The influence of particles recycling on the geochemistry of sediments in a large tropical dam lake in the Amazonian region, Brazil. Article in Journal of South American Earth Sciences 72 · December 2016 DOI: 10.1016/j.jsames.2016.09.012 1st Rita Fonseca 16.85 · Universidade de Évora 2nd Catarina Pinho 3rd Manuela Oliveira 22.6 · Universidade de Évora Abstract As a result of over-erosion of soils, the fine particles, which contain the majority of nutrients, are easily washed away from soils, which become deficient in a host of components, accumulating in lakes. On one hand, the accumulation of nutrients-rich sediments are a problem, as they affect the quality of the overlying water and decrease the water storage capacity of the system; on the other hand, sediments may constitute an important resource, as they are often extremely rich in organic and inorganic nutrients in readily available forms. In the framework of an extensive work on the use of rock related materials to enhance the fertility of impoverish soils, this study aimed to evaluate the role on the nutrients cycle, of particles recycling processes from the watershed to the bottom of a large dam reservoir, at a wet tropical region under high weathering conditions. The study focus on the mineralogical transformations that clay particles undergo from the soils of the drainage basin to their final deposition within the reservoir and their influence in terms of the geochemical characteristics of sediments. We studied the bottom sediments that accumulate in two distinct seasonal periods in Tucuruí reservoir, located in the Amazonian Basin, Brazil, and soils from its drainage basin. The surface layers of sediments in twenty sampling points with variable depths, are representative of the different morphological sections of the reservoir. Nineteen soil samples, representing the main soil classes, were collected near the margins of the reservoir. Sediments and soils were subjected to the same array of physical, mineralogical and geochemical analyses: (1) texture, (2) characterization and semi-quantification of the clay fraction mineralogy and (3) geochemical analysis of the total concentration of major elements, organic compounds (organic C and nitrogen), soluble fractions of nutrients (P and K), exchangeable fractions (cation exchange capacity, exchangeable bases and acidity) and pH(H2O).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose Inadequate soil use and management practices promote commonly negative impacts on the soil constituents and their properties, with consequences to ecosystems. As the soil mineralogy can be permanently altered due to soil use, this approach can be used as a tool to monitor the anthropogenic pressure. The objective of the present study was to assess the mineralogical alterations of a Brazilian regosol used for grape production for 40 years in comparison with a soil under natural vegetation (forest), aiming to discuss anthropogenic pressure on soils. Material and methods Soil samples were collected at depths of 0?0.20 and 0.20?0.40 m from vineyard production and natural vegetation sites. Physical and chemical parameters were analysed by classic approaches. Mineralogical analyses were carried out on <2 mm, silt and clay fractions. Clay minerals were estimated by the relative percentage of peak surface area of the X-ray patterns. Results and discussion Grape production reduced the organic matter content by 28% and the clay content by 23% resulting in a decreasing cation exchange capacity. A similar clay fraction was observed in both soils, containing kaolinite, illite/mica and vermiculite with hydroxy-Al polymers interlayered. Neither gibbsite nor chlorite was found. However, in the soil under native vegetation, the proportion of illite (79 %) was higher than vermiculite (21 %). Whereas, in the soil used for grape production during 40 years, the formation of vermiculite was promoted. Conclusions Grape production alters the proportions of soil constituents of the regosol, reducing clay fraction and organic matter contents, as well as promoting changes in the soil clay minerals with the formation of vermiculite to the detriment of illite, which suggests weathering acceleration and susceptibility to anthropogenic pressure. Recommendations and perspectives Ecosystems in tropical and subtropical climates can be more easily and permanently altered due to anthropogenic pressure, mainly as a consequence of a great magnitude of phenomena such as temperature amplitude and rainfall that occurs in these regions. This is more worrying when soils are located on steep grades with a high anthropogenic pressure, like regosols in Southern Brazil. Thus, this study suggests that changes in soil mineralogy can be used as an important tool to assess anthropogenic pressure in ecosystems and that soil quality maintenance should be a priority in sensible landscapes to maintain the ecosystem quality.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Road traffic injuries are one of the major public health burdens worldwide. The United Nations Decade of Action for Road Safety (2011-2020) implores all nations to work to reduce this burden. This decade represents a unique and historic period of time in the field of road safety. Information exchange and co-operation between nations is an important step in achieving the goal. The burden of road crashes, fatalities and injuries is not equally distributed. We know that low and middle-income countries experience the majority of the road trauma burden. Therefore it is imperative that these countries learn from the successes of others that have developed and implemented road safety laws, public education campaigns and countermeasures over many years and have achieved significant road trauma reductions as a result. China is one of the countries experiencing a large road trauma burden. Vulnerable road users such as pedestrians and cyclists make up a large proportion of fatalities and injuries in China. Speeding, impaired/drug driving, distracted driving, vehicle overloading, inadequate road infrastructure, limited use of safety restraints and helmets, and limited road safety training have all been identified as contributing to the problem. Some important steps have been taken to strengthen China’s approach, including increased penalties for drunk driving in May 2011 and increased attention to school bus safety in 2011/12. However, there is still a large amount of work needed to improve the current road safety position in China. This paper provides details of a program to assist with road safety knowledge exchange between China and Australia that was funded by the Australian Government which was undertaken in the latter part of 2012. The four month program provided the opportunity for the first author to work closely with key agencies in Australia that are responsible for policy development and implementation of a broad range of road safety initiatives. In doing so, an in-depth understanding was gained about key road safety strategies in Australia and processes for developing and implementing them. Insights were also gained into the mechanisms used for road safety policy development, implementation and evaluation in several Australian jurisdictions. Road traffic law and enforcement issues were explored with the relevant jurisdictional transport and police agencies to provide a greater understanding of how Chinese laws and practices could be enhanced. Working with agencies responsible for public education and awareness campaigns about road safety in Australia also provided relevant information about how to promote road safety at the broader community level in China. Finally, the program provided opportunities to work closely with several world-renowned Australian research centres and key expert researchers to enhance opportunities for ongoing road safety research in China. The overall program provided the opportunity for the first author to develop knowledge in key areas of road safety strategy development, implementation and management which are directly relevant to the current situation in China. This paper describes some main observations and findings from participation in the program.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study reports an investigation of the ion exchange treatment of sodium chloride solutions in relation to use of resin technology for applications such as desalination of brackish water. In particular, a strong acid cation (SAC) resin (DOW Marathon C) was studied to determine its capacity for sodium uptake and to evaluate the fundamentals of the ion exchange process involved. Key questions to answer included: impact of resin identity; best models to simulate the kinetics and equilibrium exchange behaviour of sodium ions; difference between using linear least squares (LLS) and non-linear least squares (NLLS) methods for data interpretation; and, effect of changing the type of anion in solution which accompanied the sodium species. Kinetic studies suggested that the exchange process was best described by a pseudo first order rate expression based upon non-linear least squares analysis of the test data. Application of the Langmuir Vageler isotherm model was recommended as it allowed confirmation that experimental conditions were sufficient for maximum loading of sodium ions to occur. The Freundlich expression best fitted the equilibrium data when analysing the information by a NLLS approach. In contrast, LLS methods suggested that the Langmuir model was optimal for describing the equilibrium process. The Competitive Langmuir model which considered the stoichiometric nature of ion exchange process, estimated the maximum loading of sodium ions to be 64.7 g Na/kg resin. This latter value was comparable to sodium ion capacities for SAC resin published previously. Inherent discrepancies involved when using linearized versions of kinetic and isotherm equations were illustrated, and despite their widespread use, the value of this latter approach was questionable. The equilibrium behaviour of sodium ions form sodium fluoride solution revealed that the sodium ions were now more preferred by the resin compared to the situation with sodium chloride. The solution chemistry of hydrofluoric acid was suggested as promoting the affinity of the sodium ions to the resin.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Anion-deficient layered perovskite oxides of the formula, ACa2Nb3-xMxO10-x (A = Rb, Cs; M = Al, Fe) for 0 < x less-than-or-equal-to 1.0, possessing tetragonal structures similar to the parent ACa2Nb3O10, have been synthesized. The interlayer A cations in these materials are readily exchanged with protons in aqueous HNO3 to give the protonated derivatives, HCa2Nb3-xMxO10-x; the latter are solid Bronsted acids intercalating a number of organic amines including aniline (pK(a) = 4.63). The distribution of acid sites in the interlayer region of HCa2Nb2MO9 inferred from n-alkylamine intercalation suggests that oxygen vacancies and Nb/M atoms are disordered in the ACa2Nb2MO9 samples prepared at 1100-1200-degrees-C. Annealing a disordered sample of CsCa2Nb2AlO9 for a long time at lower temperatures tends to order the Nb/Al atoms and oxygen vacancies to produce octahedral (NbO6/2)-tetrahedral (AlO4/2)-octahedral (NbO6/2) layer sequence reminiscent of the brownmillerite structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increases in atmospheric concentrations of the greenhouse gases (GHGs) carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) due to human activities have been linked to climate change. GHG emissions from land use change and agriculture have been identified as significant contributors to both Australia’s and the global GHG budget. This is expected to increase over the coming decades as rates of agriculture intensification and land use change accelerate to support population growth and food production. Limited data exists on CO2, CH4 and N2O trace gas fluxes from subtropical or tropical soils and land uses. To develop effective mitigation strategies a full global warming potential (GWP) accounting methodology is required that includes emissions of the three primary greenhouse gases. Mitigation strategies that focus on one gas only can inadvertently increase emissions of another. For this reason, detailed inventories of GHGs from soils and vegetation under individual land uses are urgently required for subtropical Australia. This study aimed to quantify GHG emissions over two consecutive years from three major land uses; a well-established, unfertilized subtropical grass-legume pasture, a 30 year (lychee) orchard and a remnant subtropical Gallery rainforest, all located near Mooloolah, Queensland. GHG fluxes were measured using a combination of high resolution automated sampling, coarser spatial manual sampling and laboratory incubations. Comparison between the land uses revealed that land use change can have a substantial impact on the GWP on a landscape long after the deforestation event. The conversion of rainforest to agricultural land resulted in as much as a 17 fold increase in GWP, from 251 kg CO2 eq. ha-1 yr-1 in the rainforest to 889 kg CO2 eq. ha-1 yr-1 in the pasture to 2538 kg CO2 eq. ha-1 yr-1 in the lychee plantation. This increase resulted from altered N cycling and a reduction in the aerobic capacity of the soil in the pasture and lychee systems, enhancing denitrification and nitrification events, and reducing atmospheric CH4 uptake in the soil. High infiltration, drainage and subsequent soil aeration under the rainforest limited N2O loss, as well as promoting CH4 uptake of 11.2 g CH4-C ha-1 day-1. This was among the highest reported for rainforest systems, indicating that aerated subtropical rainforests can act as substantial sink of CH4. Interannual climatic variation resulted in significantly higher N2O emission from the pasture during 2008 (5.7 g N2O-N ha day) compared to 2007 (3.9 g N2O-N ha day), despite receiving nearly 500 mm less rainfall. Nitrous oxide emissions from the pasture were highest during the summer months and were highly episodic, related more to the magnitude and distribution of rain events rather than soil moisture alone. Mean N2O emissions from the lychee plantation increased from an average of 4.0 g N2O-N ha-1 day-1, to 19.8 g N2O-N ha-1 day-1 following a split application of N fertilizer (560 kg N ha-1, equivalent to 1 kg N tree-1). The timing of the split application was found to be critical to N2O emissions, with over twice as much lost following an application in spring (emission factor (EF): 1.79%) compared to autumn (EF: 0.91%). This was attributed to the hot and moist climatic conditions and a reduction in plant N uptake during the spring creating conditions conducive to N2O loss. These findings demonstrate that land use change in subtropical Australia can be a significant source of GHGs. Moreover, the study shows that modifying the timing of fertilizer application can be an efficient way of reducing GHG emissions from subtropical horticulture.