958 resultados para amplified fragment length polymorphism makers
Resumo:
Background: Polycystic ovary syndrome (PCOS) is one of the most common endocrine women’s disorders in reproductive age. Hyperandrogenism has a critical role in the etiology of PCOS and it can cause fault in Steroidogenesis process. During steroidogenesis, steroidogenic acute regulatory protein (StAR) seems to increase the delivery of cholesterol through mitochondrial membrane. Therefore, polymorphisms of StAR might effect on this protein and play a role in the etiology of PCOS. Objective: The aim of this study was to investigate the association between StAR SNPs with PCOS. Thus, seven polymorphisms in this gene: rs104894086, rs104894089, rs104894090, rs137852689, rs10489487, rs104894085 were detected. Materials and Methods: In this case control study, 45 PCOS women, 40 male factor/unexplained infertile women, and 40 fertile women as two control groups were participated from 2008-2012. Polymorphisms were detected using restriction fragment length polymorphism (PCR-RFLP) method. Results: Heterozygote genotyping for rs137852689 SNP (amino acid 218 C > T) was only seen in seven PCOS patients, one in normal ovulatory women, and five in male factor/unexplained infertile women (15.5%, 2.5%, 12.5%, respectively) (p= 0.12). While, it has shown no association between other SNPS with PCOs. Conclusion: The RFLP results for seven chosen SNPs, which located in exon 5 and 7 showed normal status in three groups, it means no heterozygous or homozygous forms of selected SNPs were observed. So, it seems evaluation of the active amino acid sites should be investigated and also the study population should be increased.
Association of vitamin D receptor gene variants with polycystic ovary syndrome: A case control study
Resumo:
Background: Vitamin D and insulin play an important role in susceptibility to polycystic ovary syndrome (PCOS), and therefore vitamin D receptor (VDR), parathyroid hormone (PTH), and insulin receptor (INSR) gene variants might be involved in the pathogenesis of PCOS. Objective: The present study was designed to investigate the possible associations between polymorphisms in VDR, PTH, and INSR genes and the risk of PCOS. Materials and Methods: VDR, PTH, and INSR gene variants were genotyped in 35 women with PCOS and 35 controls using Polymerase chain reaction – Restriction fragment length polymorphism method. Furthermore, serum levels of glucose and insulin were measured in all participants. Results: No significant differences were observed for the VDR FokI, VDR Tru9I, VDR TaqI,, PTH DraII, INSR NsiI, and INSR PmlI gene polymorphisms between the women with PCOS and controls. However, after adjustment for confounding factors, the VDR BsmI “Bb” genotype and the VDR ApaI "Aa" genotype were significantly under transmitted to the patients (p= 0.016; OR= 0.250; 95% CI= 0.081-0.769, and p= 0.017; OR= 0.260; 95% CI= 0.086-0.788, respectively). Furthermore, in the women with PCOS, insulin levels were lower in the participants with the INSR NsiI "NN" genotype compared with those with the "Nn + nn" genotypes (P= 0.045). Conclusion: The results showed an association between the VDR gene BsmI and ApaI polymorphisms and PCOS risk. These data also indicated that the INSR "NN" genotype was a marker of decreased insulin in women with PCOS. Our findings, however, do not lend support to the hypothesis that PTH gene DraII variant plays a role in susceptibility to PCOS.
Resumo:
BACKGROUND Canine inflammatory bowel disease (IBD) is a chronic enteropathy of unknown etiology, although microbiome dysbiosis, genetic susceptibility, and dietary and/or environmental factors are hypothesized to be involved in its pathogenesis. Since some of the current therapies are associated with severe side effects, novel therapeutic modalities are needed. A new oral supplement for long-term management of canine IBD containing chondroitin sulfate (CS) and prebiotics (resistant starch, β-glucans and mannaoligosaccharides) was developed to target intestinal inflammation and oxidative stress, and restore normobiosis, without exhibiting any side effects. This double-blinded, randomized, placebo-controlled trial in dogs with IBD aims to evaluate the effects of 180 days administration of this supplement together with a hydrolyzed diet on clinical signs, intestinal histology, gut microbiota, and serum biomarkers of inflammation and oxidative stress. RESULTS Twenty-seven client-owned biopsy-confirmed IBD dogs were included in the study, switched to the same hydrolyzed diet and classified into one of two groups: supplement and placebo. Initially, there were no significant differences between groups (p > 0.05) for any of the studied parameters. Final data analysis (supplement: n = 9; placebo: n = 10) showed a significant decrease in canine IBD activity index (CIBDAI) score in both groups after treatment (p < 0.001). After treatment, a significant decrease (1.53-fold; p < 0.01) in histologic score was seen only in the supplement group. When groups were compared, the supplement group showed significantly higher serum cholesterol (p < 0.05) and paraoxonase-1 (PON1) levels after 60 days of treatment (p < 0.01), and the placebo group showed significantly reduced serum total antioxidant capacity (TAC) levels after 120 days (p < 0.05). No significant differences were found between groups at any time point for CIBDAI, WSAVA histologic score and fecal microbiota evaluated by PCR-restriction fragment length polymorphism (PCR-RFLP). No side effects were reported in any group. CONCLUSIONS The combined administration of the supplement with hydrolyzed diet over 180 days was safe and induced improvements in selected serum biomarkers, possibly suggesting a reduction in disease activity. This study was likely underpowered, therefore larger studies are warranted in order to demonstrate a supplemental effect to dietary treatment of this supplement on intestinal histology and CIBDAI.
Resumo:
Eighteen Corynebacterium xerosis strains isolated from different animal clinical specimens were subjected to phenotypic and molecular genetic studies. On the basis of the results of the biochemical characterization, the strains were tentatively identified as C. xerosis. Phylogenetic analysis based on comparative analysis of the sequences of 16S rRNA and rpoB genes revealed that the 18 strains were highly related to C. xerosis, C. amycolatum, C. freneyi, and C. hansenii. There was a good concordance between 16S rRNA and partial rpoB gene sequencing results, although partial rpoB gene sequencing allowed better differentiation of C. xerosis. Alternatively, C. xerosis was also differentiated from C. freneyi and C. amycolatum by restriction fragment length polymorphism analysis of the 16S-23S rRNA gene intergenic spacer region. Phenotypic characterization indicated that besides acid production from D-turanose and 5-ketogluconate, 90% of the strains were able to reduce nitrate. The absence of the fatty acids C(14:0), C(15:0), C(16:1)omega 7c, and C(17:1)omega 8c can also facilitate the differentiation of C. xerosis from closely related species. The results of the present investigation demonstrated that for reliable identification of C. xerosis strains from clinical samples, a combination of phenotypic and molecular-biology-based identification techniques is necessary.
Resumo:
The molecular profiling system was developed using directed terminal-restriction fragment length polymorphism (dT-RFLP) to characterize soil nematode assemblages by relative abundance of feeding guilds and validation by comparison to traditional morphological method. The good performance of these molecular tools applied to soil nematodes assemblages create an opportunity to develop a novel approach for rapid assessment of the biodiversity changes of benthic nematodes assemblages of marine and estuarine sediments. The main aim of this research is to combine morphological and molecular analysis of estuarine nematodes assemblages, to establish a tool for fast assessment of the biodiversity changes within habitat recovery of Zostera noltii seagrass beds; and validate the dT-RFLP as a high-throughput tool to assess the system recovery. It was also proposed to develop a database of sequences related to individuals identified at species level to develop a new taxonomic reference system. A molecular phylogenetic analysis of the estuarine nematodes has being performed. After morphological identification, barcoding of 18S rDNA are being determined for each nematode species and the results have shown a good degree of concordance between traditional morphology-based identification and DNA sequences. The digest strategy developed for soil nematodes is not suitable for marine nematodes. Then five samples were cloned and sequenced and the sequence data was used to design a new dT-RFLP strategy to adapt this tool to marine assemblages. Several solutions were presented by DRAT and tested empirically to select the solution that cuts most efficiently, separating the different clusters. The results of quantitative PCR showed differences in nematode density between two sampling stations according the abundance of the nematode density obtained by the traditional methods. These results suggest that qPCR could be a robust tool for enumeration of nematode abundance, saving time.
Resumo:
The application of molecular methods offers an alternative faster than traditional methods based on morphology It is nearly impossible to process all the samples in short period using traditional methods, and the deterioration of marine sediments rapidly occurs The dT-RFLP (directed Terminal-Restriction Fragment Length Polymorphism) allows a rapid assessment of biodiversity changes of nematodes assemblages The use of a not suitable fixing, storage time and DNA extraction could be a limitation in molecular analysis like dT-RFLP and real time PCR.Objetives: the best fixative •the level of DNA degradation over the time •the best DNA extraction method for marine nematodes and suitable for dT-RFLP analysis
Resumo:
In Europe, the concerns with the status of marine ecosystems have increased, and the Marine Directive has as main goal the achievement of Good Environmental Status (GES) of EU marine waters by 2020. Molecular tools are seen as promising and emerging approaches to improve ecosystem monitoring, and have led ecology into a new era, representing perhaps the most source of innovation in marine monitoring techniques. Benthic nematodes are considered ideal organisms to be used as biological indicator of natural and anthropogenic disturbances in aquatic ecosystems underpinning monitoring programmes on the ecological quality of marine ecosystems, very useful to assess the GES of the marine environment. dT-RFLP (directed Terminal-Restriction Fragment Length Polymorphism) allows to assess the diversity of nematode communities, but also allows studying the functioning of the ecosystem, and combined with relative real-time PCR (qPCR), provides a high-throughput semi-quantitative characterization of nematode communities. These characteristics make the two molecular tools good descriptors for the good environmental status assessment. The main aim of this study is to develop and optimize the dT-RFLP and qPCR in Mira estuary (SW coast, Portugal). A molecular phylogenetic analysis of marine and estuarine nematodes is being performed combining morphological and molecular analysis to evaluate the diversity of free-living marine nematodes in Mira estuary. After morphological identification, barcoding of 18S rDNA and COI genes are being determined for each nematode species morphologically identified. So far we generated 40 new sequences belonging to 32 different genus and 17 families, and the study has shown a good degree of concordance between traditional morphology-based identification and DNA sequences. These results will improve the assessment of marine nematode diversity and contribute to a more robust nematode taxonomy. The DNA sequences are being used to develop the dT-RFLP with the ability to easily process large sample numbers (hundreds and thousands), rather than typical of classical taxonomic or low throughput molecular analyses. A preliminary study showed that the digest enzymes used in dT-RFLP for terrestrial assemblages separated poorly the marine nematodes at taxonomic level for functional group analysis. A new digest combination was designed using the software tool DRAT (Directed Terminal Restriction Analysis Tool) to distinguished marine nematode taxa. Several solutions were provided by DRAT and tested empirically to select the solution that cuts most efficiently. A combination of three enzymes and a single digest showed to be the best solution to separate the different clusters. Parallel to this, another tool is being developed to estimate the population size (qPCR). An improvement in qPCR estimation of gene copy number using an artificial reference is being performed for marine nematodes communities to quantify the abundance. Once developed, it is proposed to validate both methodologies by determining the spatial and temporal variability of benthic nematodes assemblages across different environments. The application of these high-throughput molecular approaches for benthic nematodes will improve sample throughput and their implementation more efficient and faster as indicator of ecological status of marine ecosystems.
Resumo:
The present study examined polymorphisms of genes that might be involved in the onset of essential hypertension (HT). These included the (i) growth hormone gene (GH1), whose locus has recently been linked to elevated blood pressure (BP) in the stroke-prone SHR, although recent sib-pair analysis of a polymorphism near the human chorionic somatomammotropin gene (a member of the GH cluster) was unable to show linkage with HT; (ii) renal kallikrein gene (KLK1); and (iii) atrial natriuretic factor gene (ANF), where a primary defect in production or activity of kallikrein or ANF could cause NaCl retention and vasoconstriction. Association analyses were conducted to compare restriction fragment length polymorphisms (RFLPs) of each gene in 85 HT and 95 normotensive (NT) Caucasian subjects whose parents had a similar BP status at age ≥50 years. The frequency of the minor allele of (i) a RsaI RFLP in the promoter of GH1, amplified from leukocyte DNA by the polymerase chain reaction, was 0.15 in the HT group and 0.14 in the NT group (χ1=0.34, P=0.55); (ii) a TaqI RFLP for KLK1 was 0.035 in the HT group and 0.015 in the NT group (χ2=1.5, P=0.21); and (iii) a XhoI RFLP for ANF was 0.50 in HTs and 0.46 in NTs (χ2=0.20, P=0.65). Studies of HT pedigrees found one family in which the ANF locus and HT were not linked, owing to an obligate recombinant. The present data thus provide no evidence for involvement of the growth hormone, renal kallikrein, nor ANF gene in the causation of essential hypertension.
Resumo:
Sequence-related amplified polymorphism (SRAP) is a novel molecular marker technique designed to amplify open reading frames (ORFs). The SRAP analytic system was set up and applied to Porphyra germplasm identification in this study for the first time. Sixteen Porphyra lines were screened by SRAP technique with 30 primer combinations. In the analysis, 14 primer combinations produced stable and reproducible amplification patterns in three repetitive experiments. Among the total 533 amplified fragments, 522 (98%) were polymorphic, with an average of 38 fragments for each primer combination, ranging in size from 50 to 500 bp. The 533 fragments were visually scored one by one and then used to develop a dendrogram with Unweighted Pair-Group Method Arithmetic Average (UPGMA), and the 16 Porphyra lines were divided into two major groups at the 0.68 similarity level. From the total 533 fragments, I I amplified by two primer combinations, ME1/EM1 and ME4/EM6, were used to develop the DNA fingerprints of the 16 Porphyra lines. The DNA fingerprints were then converted into binary codes, with I and 0 representing presence and absence of the corresponding amplified fragment, respectively. In the DNA fingerprints, each of the 16 Porphyra lines has its unique binary code and can be easily distinguished from the others. This is the first report on the development of SRAP technique and its utilization in germplasm identification of seaweeds. The results demonstrated that SRAP is a simple, stable, polymorphic and reproducible molecular marker technique for the classification and identification of Porphyra lines. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The length polymorphism of ribosomal DNA ITS-1 intergenic spacer was analyzed in eight species of triatomines belonging to Triatoma, Rhodnius, and Panstrongylus genera. The analyzed species were Rhodnius domesticus, R. neivai, R. robustus, Triatoma brasiliensis, T. infestans, T. vitticeps, Panstrongylus megistus, and P. herreri. These insects are vectors of Chagas' disease, one of the most prominent public health problems among South American countries. This work allowed the differentiation between species of the Triatomini and Rhodniini tribes through the analysis of ITS-1 length polymorphism by PCR and RFLP techniques. The species of the Triatoma and Panstrongylus genera presented an amplified ITS-1 fragment between 600 and 1000 bp, whereas Rhodnius presented a less variable ITS-1 length fragment, around 300 bp, which could reflect the monophyletic origin of the Rhodniini tribe. Species belonging to this genus were further differentiated by RFLP with HaeIII and AluI endonucleases. Our results corroborate the hypothesis of polyphyletic origin in this group of insects and contribute to knowledge about evolutionary relationships in triatomines.
Resumo:
Breast cancer is the leading cause of cancer death among Australian women and its incidence is annually increasing. Genetic factors are involved in the complex etiology of breast cancer. The seco-steroid hormone, 1.25 dihydroxy vitamin D3 can influence breast cancer cell growth in vitro. A number of studies have reported correlations between vitamin D receptor (VDR) gene polymorphisms and several diseases including prostate cancer and osteoporosis. In breast cancer, low vitamin D levels in serum are correlated with disease progression and bone metastases, a situation also noted in prostate cancer and suggesting the involvement of the VDR. In our study, 2 restriction fragment length polymorphisms (RFLP) in the 3' region (detected by Apa1 and Taq1) and an initiation codon variant in the 5' end of the VDR gene (detected by Fok1) were tested for association with breast cancer risk in 135 females with sporadic breast cancer and 110 cancer-free female controls. Allele frequencies of the 3' Apa1 polymorphism showed a significant association (p = 0.016; OR = 1.56, 95% CI = 1.09-2.24) while the Taq1 RFLP showed a similar trend (p = 0.053; OR = 1.45, 95% CI = 1.00-2.00). Allele frequencies of the Fok1 polymorphism were not significantly different (p = 0.97; OR = 0.99, 95% CI = 0.69-1.43) in the study population. Our results suggest that specific alleles of the VDR gene located near the 3' region may identify an increased risk for breast cancer and justify further investigation of the role of VDR in breast cancer.
Resumo:
Mitochondrial DNAs (mtDNA) from 21 yaks (Bos grunniens) were assayed for restriction fragment length polymorphisms by using 20 restriction endonucleases, six of which (AvaI, AvaII, BglII, EcoRI, HindIII, and HpaI) detected polymorphism. Four different mtD
Resumo:
The Burkholderia cepacia complex (Bcc) is a group of significant opportunistic respiratory pathogens which affect people with cystic fibrosis. In this study, we sought to ascertain the epidemiology and geographic species distribution of 116 Bcc isolates collected from people with CF in Australia and New Zealand. We performed a combination of recA-based PCR, amplified rDNA restriction analysis (ARDRA), pulsed-field gel electrophoresis and repetitive extragenic palindromic PCR on each isolate. Each Burkholderia cenocepacia isolate was also screened by PCR for the presence of the B. cepacia epidemic strain marker. One hundred and fourteen isolates were assigned to a species using recA-based PCR and ARDRA. B. cenocepacia, B. multivorans and B. cepacia accounted for 45.7%, 29.3% and 11.2% of the isolates, respectively. Strain analysis of B. cenocepacia revealed that 85.3% of the isolates were unrelated. One related B. cenocepacia strain was identified amongst 15 people. Whilst full details of person-to-person contact was not available, all patients attended CF centres in Queensland (Qld) and New South Wales (NSW). Although person-to-person transmission of B. cenocepacia strains has occurred in Australia, the majority of CF-related Bcc infections in Australia and New Zealand are most likely acquired from the environment.
Resumo:
BACKGROUND: Burkholderia pseudomallei is an important cause of acute fulminant pneumonia and septicaemia in tropical regions of northern Australia and south east Asia. Subacute and chronic forms of the disease also occur. There have been three recent reports of adults with cystic fibrosis (CF) who presumably acquired B pseudomallei infection during extended vacations or residence in either Thailand or northern Australia.
METHODS: The clinical course, molecular characteristics, serology and response to treatment are described in four adult CF patients infected with B pseudomallei. Polymerase chain reaction (PCR) based methods were used to confirm B pseudomallei and exclude B cepacia complex. Genotyping was performed using randomly amplified polymorphic DNA (RAPD) PCR and pulsed field gel electrophoresis (PFGE).
RESULTS: Four patients are described with a mean duration of infection of 32 months. All but one patient lived in tropical Queensland. Two patients (with the longest duration of infection) deteriorated clinically and one subsequently died of respiratory failure. Both responded to intravenous treatment specifically targeting B pseudomallei. Another patient suffered two severe episodes of acute bronchopneumonia following acquisition of B pseudomallei. Eradication of the organism was not possible in any of the cases. PFGE of a sample isolate from each patient revealed the strains to be unique and RAPD analysis showed retention of the same strain within an individual over time.
CONCLUSIONS: These findings support a potential pathogenic role for B pseudomallei in CF lung disease, producing both chronic infection and possibly acute bronchopneumonia. Identical isolates are retained over time and are unique, consistent with likely environmental acquisition and not person to person spread. B pseudomallei is emerging as a significant pathogen for patients with CF residing and holidaying in the tropics.