933 resultados para alunite, thermal analysis, controlled rate thermal analysis, dehydration, dehydroxylation
Resumo:
Thermal louvers, using movable or rotating shutters over a radiating surface, have gained a wide acceptance as highly efficient devices for controlling the temperature of a spacecraft. This paper presents a detailed analysis of the performance of a rectangular thermal louver with movable blades. The radiative capacity of the louver, determined by its effective emittance, is calculated for different values of the blades opening angle. Experimental results obtained with a prototype of a spacecraft thermal louver show good agreement with the theoretical values.
Resumo:
The experimental technique used for detection of subcooled boiling through analysis of the fluctuation contained in pressure transducer signals is presented. This work was partly conducted at the Institut für Kerntechnik und zertörungsfreie Prüfverfahren von Hannover (IKPH, Germany) in a thermal-hydraulic circuit with one electrically heated rod with annular geometry test section. Piezoresistive pressure sensors are used for onset of nucleate boiling (ONB) and onset of fully developed boiling (OFDB) detection using spectral analysis/ signal correlation techniques. Experimental results are interpreted by phenomenological analysis of these two points and compared with existing correlation. The results allow us to conclude that this technique is adequate for the detection and monitoring of the ONB and OFDB.
Resumo:
This thesis presents a one-dimensional, semi-empirical dynamic model for the simulation and analysis of a calcium looping process for post-combustion CO2 capture. Reduction of greenhouse emissions from fossil fuel power production requires rapid actions including the development of efficient carbon capture and sequestration technologies. The development of new carbon capture technologies can be expedited by using modelling tools. Techno-economical evaluation of new capture processes can be done quickly and cost-effectively with computational models before building expensive pilot plants. Post-combustion calcium looping is a developing carbon capture process which utilizes fluidized bed technology with lime as a sorbent. The main objective of this work was to analyse the technological feasibility of the calcium looping process at different scales with a computational model. A one-dimensional dynamic model was applied to the calcium looping process, simulating the behaviour of the interconnected circulating fluidized bed reactors. The model incorporates fundamental mass and energy balance solvers to semi-empirical models describing solid behaviour in a circulating fluidized bed and chemical reactions occurring in the calcium loop. In addition, fluidized bed combustion, heat transfer and core-wall layer effects were modelled. The calcium looping model framework was successfully applied to a 30 kWth laboratory scale and a pilot scale unit 1.7 MWth and used to design a conceptual 250 MWth industrial scale unit. Valuable information was gathered from the behaviour of a small scale laboratory device. In addition, the interconnected behaviour of pilot plant reactors and the effect of solid fluidization on the thermal and carbon dioxide balances of the system were analysed. The scale-up study provided practical information on the thermal design of an industrial sized unit, selection of particle size and operability in different load scenarios.
Resumo:
Ion mobility spectrometry (IMS) is a straightforward, low cost method for fast and sensitive determination of organic and inorganic analytes. Originally this portable technique was applied to the determination of gas phase compounds in security and military use. Nowadays, IMS has received increasing attention in environmental and biological analysis, and in food quality determination. This thesis consists of literature review of suitable sample preparation and introduction methods for liquid matrices applicable to IMS from its early development stages to date. Thermal desorption, solid phase microextraction (SPME) and membrane extraction were examined in experimental investigations of hazardous aquatic pollutants and potential pollutants. Also the effect of different natural waters on the extraction efficiency was studied, and the utilised IMS data processing methods are discussed. Parameters such as extraction and desorption temperatures, extraction time, SPME fibre depth, SPME fibre type and salt addition were examined for the studied sample preparation and introduction methods. The observed critical parameters were extracting material and temperature. The extraction methods showed time and cost effectiveness because sampling could be performed in single step procedures and from different natural water matrices within a few minutes. Based on these experimental and theoretical studies, the most suitable method to test in the automated monitoring system is membrane extraction. In future an IMS based early warning system for monitoring water pollutants could ensure the safe supply of drinking water. IMS can also be utilised for monitoring natural waters in cases of environmental leakage or chemical accidents. When combined with sophisticated sample introduction methods, IMS possesses the potential for both on-line and on-site identification of analytes in different water matrices.
Resumo:
Advancements in IC processing technology has led to the innovation and growth happening in the consumer electronics sector and the evolution of the IT infrastructure supporting this exponential growth. One of the most difficult obstacles to this growth is the removal of large amount of heatgenerated by the processing and communicating nodes on the system. The scaling down of technology and the increase in power density is posing a direct and consequential effect on the rise in temperature. This has resulted in the increase in cooling budgets, and affects both the life-time reliability and performance of the system. Hence, reducing on-chip temperatures has become a major design concern for modern microprocessors. This dissertation addresses the thermal challenges at different levels for both 2D planer and 3D stacked systems. It proposes a self-timed thermal monitoring strategy based on the liberal use of on-chip thermal sensors. This makes use of noise variation tolerant and leakage current based thermal sensing for monitoring purposes. In order to study thermal management issues from early design stages, accurate thermal modeling and analysis at design time is essential. In this regard, spatial temperature profile of the global Cu nanowire for on-chip interconnects has been analyzed. It presents a 3D thermal model of a multicore system in order to investigate the effects of hotspots and the placement of silicon die layers, on the thermal performance of a modern ip-chip package. For a 3D stacked system, the primary design goal is to maximise the performance within the given power and thermal envelopes. Hence, a thermally efficient routing strategy for 3D NoC-Bus hybrid architectures has been proposed to mitigate on-chip temperatures by herding most of the switching activity to the die which is closer to heat sink. Finally, an exploration of various thermal-aware placement approaches for both the 2D and 3D stacked systems has been presented. Various thermal models have been developed and thermal control metrics have been extracted. An efficient thermal-aware application mapping algorithm for a 2D NoC has been presented. It has been shown that the proposed mapping algorithm reduces the effective area reeling under high temperatures when compared to the state of the art.
Resumo:
Ionic liquids, ILs, have recently been studied with accelerating interest to be used for a deconstruction/fractionation, dissolution or pretreatment processing method of lignocellulosic biomass. ILs are usually utilized combined with heat. Regarding lignocellulosic recalcitrance toward fractionation and IL utilization, most of the studies concern IL utilization in the biomass fermentation process prior to the enzymatic hydrolysis step. It has been demonstrated that IL-pretreatment gives more efficient hydrolysis of the biomass polysaccharides than enzymatic hydrolysis alone. Both cellulose (especially cellulose) and lignin are very resistant towards fractionation and even dissolution methods. As an example, it can be mentioned that softwood, hardwood and grass-type plant species have different types of lignin structures leading to the fact that softwood lignin (guaiacyl lignin dominates) is the most difficult to solubilize or chemically disrupt. In addition to the known conventional biomass processing methods, several ILs have also been found to efficiently dissolve either cellulose and/or wood samples – different ILs are suitable for different purposes. An IL treatment of wood usually results in non-fibrous pulp, where lignin is not efficiently separated and wood components are selectively precipitated, as cellulose is not soluble or degradable in ionic liquids under mild conditions. Nevertheless, new ILs capable of rather good fractionation performance have recently emerged. The capability of the IL to dissolve or deconstruct wood or cellulose depends on several factors, (e.g. sample origin, the particle size of the biomass, mechanical treatments as pulverization, initial biomassto-IL ratio, water content of the biomass, possible impurities of IL, reaction conditions, temperature etc). The aim of this study was to obtain (fermentable) saccharides and other valuable chemicals from wood by a combined heat and IL-treatment. Thermal treatments alone contribute to the degradation of polysaccharides (e.g. 150 °C alone is said to cause the degradation of polysaccharides), thus temperatures below that should be used, if the research interest lies on the IL effectiveness. On the other hand, the efficiency of the IL-treatment can also be enhanced to combine other treatment methods, (e.g. microwave heating). The samples of spruce, pine and birch sawdust were treated with either 1-Ethyl-3-methylimidazolium chloride, Emim Cl, or 1-Ethyl-3-methylimidazolium acetate, Emim Ac, (or with ionized water for comparison) at various temperatures (where focus was between 80 and 120 °C). The samples were withdrawn at fixed time intervals (the main interest treatment time area lied between 0 and 100 hours). Double experiments were executed. The selected mono- and disaccharides, as well as their known degradation products, 5-hydroxymethylfurfural, 5-HMF, and furfural were analyzed with capillary electrophoresis, CE, and high-performance liquid chromatography, HPLC. Initially, even GC and GC-MS were utilized. Galactose, glucose, mannose and xylose were the main monosaccharides that were present in the wood samples exposed to ILs at elevated temperatures; in addition, furfural and 5-HMF were detected; moreover, the quantitative amount of the two latter ones were naturally increasing in line with the heating time or the IL:wood ratio.
Resumo:
In the framework of the biorefinery concept researchers aspire to optimize the utilization of plant materials, such as agricultural wastes and wood. For most of the known processes, the first steps in the valorisation of biomass are the extraction and purification of the individual components. The obtained raw products by means of a controlled separation can consecutively be modified to result in biofuels or biogas for energy production, but also in value-added products such as additives and important building blocks for the chemical and material industries. Considerable efforts are undertaken in order to substitute the use of oil-based starting materials or at least minimize their processing for the production of everyday goods. Wood is one of the raw materials, which have gained large attention in the last decades and its composition has been studied in detail. Nowadays, the extraction of water-soluble hemicelluloses from wood is well known and so for example xylan can be obtained from hardwoods and O-acetyl galactoglucomannans (GGMs) from softwoods. The aim of this work was to develop water-soluble amphiphilic materials of GGM and to assess their potential use as additives. Furthermore, GGM was also applied as a crosslinker in the synthesis of functional hydrogels for the removal of toxic metals and metalloid ions from aqueous solutions. The distinguished products were obtained by several chemical approaches and analysed by nuclear magnetic resonance spectroscopy (NMR), Fourier transform infrared spectroscopy (FTIR), size exclusion chromatography (SEC), thermal gravimetric analysis (TGA), scanning electron microscope SEM, among others. Bio-based surfactants were produced by applying GGM and different fatty acids as starting materials. On one hand, GGM-grafted-fatty acids were prepared by esterification and on the other hand, well-defined GGM-block-fatty acid derivatives were obtained by linking amino-functional fatty acids to the reducing end of GGM. The reaction conditions for the syntheses were optimized and the resultant amphiphilic GGM derivatives were evaluated concerning their ability to reduce the surface tension of water as surfactants. Furthermore, the block-structured derivatives were tested in respect to their applicability as additives for the surface modification of cellulosic materials. Besides the GGM surfactants with a bio-based hydrophilic and a bio-based hydrophobic part, also GGM block-structured derivatives with a synthetic hydrophobic tail, consisting of a polydimethylsiloxane chain, were prepared and assessed for the hydrophobization of surface of nanofibrillated cellulose films. In order to generate GGM block-structured derivatives containing a synthetic tail with distinguished physical and chemical properties, as well as a tailored chain length, a controlled polymerization method was used. Therefore, firstly an initiator group was introduced at the reducing end of the GGM and consecutively single electron transfer-living radical polymerization (SET-LRP) was performed by applying three different monomers in individual reactions. For the accomplishment of the synthesis and the analysis of the products, challenges related to the solubility of the reactants had to be overcome. Overall, a synthesis route for the production of GGM block-copolymers bearing different synthetic polymer chains was developed and several derivatives were obtained. Moreover, GGM with different molar masses were, after modification, used as a crosslinker in the synthesis of functional hydrogels. Hereby, a cationic monomer was used during the free radical polymerization and the resultant hydrogels were successfully tested for the removal of chromium and arsenic ions from aqueous solutions. The hydrogel synthesis was tailored and materials with distinguished physical properties, such as the swelling rate, were obtained after purification. The results generated in this work underline the potential of bio-based products and the urge to continue carrying out research in order to be able to use more green chemicals for the manufacturing of biorenewable and biodegradable daily products.
Resumo:
This thesis concentrates on the validation of a generic thermal hydraulic computer code TRACE under the challenges of the VVER-440 reactor type. The code capability to model the VVER-440 geometry and thermal hydraulic phenomena specific to this reactor design has been examined and demonstrated acceptable. The main challenge in VVER-440 thermal hydraulics appeared in the modelling of the horizontal steam generator. The major challenge here is not in the code physics or numerics but in the formulation of a representative nodalization structure. Another VVER-440 specialty, the hot leg loop seals, challenges the system codes functionally in general, but proved readily representable. Computer code models have to be validated against experiments to achieve confidence in code models. When new computer code is to be used for nuclear power plant safety analysis, it must first be validated against a large variety of different experiments. The validation process has to cover both the code itself and the code input. Uncertainties of different nature are identified in the different phases of the validation procedure and can even be quantified. This thesis presents a novel approach to the input model validation and uncertainty evaluation in the different stages of the computer code validation procedure. This thesis also demonstrates that in the safety analysis, there are inevitably significant uncertainties that are not statistically quantifiable; they need to be and can be addressed by other, less simplistic means, ultimately relying on the competence of the analysts and the capability of the community to support the experimental verification of analytical assumptions. This method completes essentially the commonly used uncertainty assessment methods, which are usually conducted using only statistical methods.
Resumo:
In order to assess the relative influence of age, resting heart rate (HR) and sedentary life style, heart rate variability (HRV) was studied in two different groups. The young group (YG) consisted of 9 sedentary subjects aged 15 to 20 years (YG-S) and of 9 nonsedentary volunteers (YG-NS) also aged 15 to 20. The elderly sedentary group (ESG) consisted of 16 sedentary subjects aged 39 to 82 years. HRV was assessed using a short-term procedure (5 min). R-R variability was calculated in the time-domain by means of the root mean square successive differences. Frequency-domain HRV was evaluated by power spectrum analysis considering high frequency and low frequency bands. In the YG the effort tolerance was ranked in a bicycle stress test. HR was similar for both groups while ESG showed a reduced HRV compared with YG. Within each group, HRV displayed a negative correlation with HR. Although YG-NS had better effort tolerance than YG-S, their HR and HRV were not significantly different. We conclude that HRV is reduced with increasing HR or age, regardless of life style. The results obtained in our short-term study agree with others of longer duration by showing that age and HR are the main determinants of HRV. Our results do not support the idea that changes in HRV are related to regular physical activity.
Resumo:
The aim of the present study was to compare heart rate variability (HRV) at rest and during exercise using a temporal series obtained with the Polar S810i monitor and a signal from a LYNX® signal conditioner (BIO EMG 1000 model) with a channel configured for the acquisition of ECG signals. Fifteen healthy subjects aged 20.9 ± 1.4 years were analyzed. The subjects remained at rest for 20 min and performed exercise for another 20 min with the workload selected to achieve 60% of submaximal heart rate. RR series were obtained for each individual with a Polar S810i instrument and with an ECG analyzed with a biological signal conditioner. The HRV indices (rMSSD, pNN50, LFnu, HFnu, and LF/HF) were calculated after signal processing and analysis. The unpaired Student t-test and intraclass correlation coefficient were used for data analysis. No statistically significant differences were observed when comparing the values analyzed by means of the two devices for HRV at rest and during exercise. The intraclass correlation coefficient demonstrated satisfactory correlation between the values obtained by the devices at rest (pNN50 = 0.994; rMSSD = 0.995; LFnu = 0.978; HFnu = 0.978; LF/HF = 0.982) and during exercise (pNN50 = 0.869; rMSSD = 0.929; LFnu = 0.973; HFnu = 0.973; LF/HF = 0.942). The calculation of HRV values by means of temporal series obtained from the Polar S810i instrument appears to be as reliable as those obtained by processing the ECG signal captured with a signal conditioner.
Resumo:
The aim of the present study was to determine the effect of volume and composition of fluid replacement on the physical performance of male football referees. Ten referees were evaluated during three official matches. In one match the participants were asked to consume mineral water ad libitum, and in the others they consumed a pre-determined volume of mineral water or a carbohydrate electrolyte solution (6.4% carbohydrate and 22 mM Na+) equivalent to 1% of their baseline body mass (half before the match and half during the interval). Total water loss, sweat rate and match physiological performance were measured. When rehydrated ad libitum (pre-match and at half time) participants lost 1.97 ± 0.18% of their pre-match body mass (2.14 ± 0.19 L). This parameter was significantly reduced when they consumed a pre-determined volume of fluid. Sweat rate was significantly reduced when the referees ingested a pre-determined volume of a carbohydrate electrolyte solution, 0.72 ± 0.12 vs 1.16 ± 0.11 L/h ad libitum. The high percentage (74.1%) of movements at low speed (walking, jogging) observed when they ingested fluid ad libitum was significantly reduced to 71% with mineral water and to 69.9% with carbohydrate solution. An increase in percent movement expended in backward running was observed when they consumed a pre-determined volume of carbohydrate solution, 7.7 ± 0.5 vs 5.5 ± 0.5% ad libitum. The improved hydration status achieved with the carbohydrate electrolyte solution reduced the length of time spent in activities at low-speed movements and increased the time spent in activities demanding high-energy expenditure.
Resumo:
The objectives of this study were to evaluate and compare the use of linear and nonlinear methods for analysis of heart rate variability (HRV) in healthy subjects and in patients after acute myocardial infarction (AMI). Heart rate (HR) was recorded for 15 min in the supine position in 10 patients with AMI taking β-blockers (aged 57 ± 9 years) and in 11 healthy subjects (aged 53 ± 4 years). HRV was analyzed in the time domain (RMSSD and RMSM), the frequency domain using low- and high-frequency bands in normalized units (nu; LFnu and HFnu) and the LF/HF ratio and approximate entropy (ApEn) were determined. There was a correlation (P < 0.05) of RMSSD, RMSM, LFnu, HFnu, and the LF/HF ratio index with the ApEn of the AMI group on the 2nd (r = 0.87, 0.65, 0.72, 0.72, and 0.64) and 7th day (r = 0.88, 0.70, 0.69, 0.69, and 0.87) and of the healthy group (r = 0.63, 0.71, 0.63, 0.63, and 0.74), respectively. The median HRV indexes of the AMI group on the 2nd and 7th day differed from the healthy group (P < 0.05): RMSSD = 10.37, 19.95, 24.81; RMSM = 23.47, 31.96, 43.79; LFnu = 0.79, 0.79, 0.62; HFnu = 0.20, 0.20, 0.37; LF/HF ratio = 3.87, 3.94, 1.65; ApEn = 1.01, 1.24, 1.31, respectively. There was agreement between the methods, suggesting that these have the same power to evaluate autonomic modulation of HR in both AMI patients and healthy subjects. AMI contributed to a reduction in cardiac signal irregularity, higher sympathetic modulation and lower vagal modulation.
Resumo:
We assessed the efficacy and tolerability of the augmentation of antidepressants (ATDs) with atypical antipsychotics (AAPs) to treat patients with major depressive disorder. A retrograde study to identify relevant patient data included databases of PubMed, EMBASE, Cochrane Central Register of Controlled Trials, and Database of Abstracts of Reviews of Effects. Data from 17 trials, involving 3807 participants, were identified. The remission rate (RR) and overall response rate (ORR) of adjunctive treatment with AAPs were significantly higher than placebo treatment: RR=1.90 (95%CI=1.61-2.23, z=7.74, P<0.00001) and ORR=1.68 (95%CI=1.45-1.94, z=7.07, P<0.00001). We found that the short-term (4 weeks) treatment [ORR=1.70 (95%CI=0.98-2.95, Z=1.89, P=0.06)] was significantly different from the long-term (6-12 weeks) treatment [ORR=1.68 (95%CI=1.45-1.94, z=7.07, P<0.00001)]. No significant difference in ORR was observed between groups with or without sedative drugs. The discontinuation rate due to adverse effects was higher for adjunctive treatment with AAPs: ORR=3.32 (95%CI=2.35-4.70, z=6.78, P<0.00001). These results demonstrate that the augmentation of ATDs with AAPs (olanzapine, quetiapine, aripiprazole, and risperidone) was more effective than a placebo in improving response and remission rates, although associated with a higher discontinuation rate due to adverse effects.
Resumo:
There has been concern regarding the use of controversial paradigms for repetitive transcranial magnetic stimulation (rTMS) to manage treatment-resistant depression (TRD). This meta-analysis assessed the efficacy of bilateral rTMS compared with unilateral and sham rTMS in patients with TRD. PubMed, Embase, CENTRAL, PsycINFO, Web of Science, EAGLE and NTIS databases were searched to identify relevant studies, and randomized controlled trials (RCTs) on bilateral rTMS for TRD patients were included. The response was defined as the primary outcome, and remission was the secondary outcome. Ten RCTs that included 634 patients met the eligibility criteria. The risk ratio (RRs) of both the primary and secondary outcomes of bilateral rTMS showed non-significant increases compared to unilateral rTMS (RR=1.01, P=0.93; odds ratio [OR]=0.77, P=0.22). Notably, the RR of the primary bilateral rTMS outcome was significantly increased compared to that for sham rTMS (RR=3.43, P=0.0004). The results of our analysis demonstrated that bilateral rTMS was significantly more effective than sham rTMS but not unilateral rTMS in patients with TRD. Thus, bilateral rTMS may not be a useful paradigm for patients with TRD.
Resumo:
The radial approach is widely used in the treatment of patients with coronary artery disease. We conducted a meta-analysis of published results on the efficacy and safety of the left and right radial approaches in patients undergoing percutaneous coronary procedures. A systematic search of reference databases was conducted, and data from 14 randomized controlled trials involving 6870 participants were analyzed. The left radial approach was associated with significant reductions in fluoroscopy time [standardized mean difference (SMD)=-0.14, 95% confidence interval (CI)=-0.19 to -0.09; P<0.00001] and contrast volume (SMD=-0.07, 95%CI=-0.12 to -0.02; P=0.009). There were no significant differences in rate of procedural failure of the left and the right radial approaches [risk ratios (RR)=0.98; 95%CI=0.77-1.25; P=0.88] or procedural time (SMD=-0.05, 95%CI=0.17-0.06; P=0.38). Tortuosity of the subclavian artery (RR=0.27, 95%CI=0.14-0.50; P<0.0001) was reported more frequently with the right radial approach. A greater number of catheters were used with the left than with the right radial approach (SMD=0.25, 95%CI=0.04-0.46; P=0.02). We conclude that the left radial approach is as safe as the right radial approach, and that the left radial approach should be recommended for use in percutaneous coronary procedures, especially in percutaneous coronary angiograms.