930 resultados para airway diseases
Resumo:
A 9-month-old girl presented with life-threatening acute respiratory failure 1 week after the surgical correction of a double aortic arch, which was due to a severe bulging of the pars membranacea into the lumen of the trachea that produced a complete obstruction of the lower trachea. Under cardiopulmonary bypass, a Y-shaped posterior biodegradable splint was placed behind the trachea and sutured to the posterior trachea, and a simultaneous right aortic arch aortopexy was performed. Thereafter, the child recovered normal respiratory function. Follow-up bronchoscopy showed a posterior dip at the splint level and an asymptomatic persistent posterior compression of the right main bronchus.
Resumo:
Recent data for the global burden of disease reflect major demographic and lifestyle changes, leading to a rise in non-communicable diseases. Most countries with high levels of tuberculosis face a large comorbidity burden from both non-communicable and communicable diseases. Traditional disease-specific approaches typically fail to recognise common features and potential synergies in integration of care, management, and control of non-communicable and communicable diseases. In resource-limited countries, the need to tackle a broader range of overlapping comorbid diseases is growing. Tuberculosis and HIV/AIDS persist as global emergencies. The lethal interaction between tuberculosis and HIV coinfection in adults, children, and pregnant women in sub-Saharan Africa exemplifies the need for well integrated approaches to disease management and control. Furthermore, links between diabetes mellitus, smoking, alcoholism, chronic lung diseases, cancer, immunosuppressive treatment, malnutrition, and tuberculosis are well recognised. Here, we focus on interactions, synergies, and challenges of integration of tuberculosis care with management strategies for non-communicable and communicable diseases without eroding the functionality of existing national programmes for tuberculosis. The need for sustained and increased funding for these initiatives is greater than ever and requires increased political and funder commitment.
Resumo:
BACKGROUND: Pediatric rheumatic diseases have a significant impact on children's quality of life and family functioning. Disease control and management of the symptoms are important to minimize disability and pain. Specialist clinical nurses play a key role in supporting medical teams, recognizing poor disease control and the need for treatment changes, providing a resource to patients on treatment options and access to additional support and advice, and identifying best practices to achieve optimal outcomes for patients and their families. This highlights the importance of investigating follow-up telenursing (TN) consultations with experienced, specialist clinical nurses in rheumatology to provide this support to children and their families. METHODS/DESIGN: This randomized crossover, experimental longitudinal study will compare the effects of standard care against a novel telenursing consultation on children's and family outcomes. It will examine children below 16 years old, recently diagnosed with inflammatory rheumatic diseases, who attend the pediatric rheumatology outpatient clinic of a tertiary referral hospital in western Switzerland, and one of their parents. The telenursing consultation, at least once a month, by a qualified, experienced, specialist nurse in pediatric rheumatology will consist of providing affective support, health information, and aid to decision-making. Cox's Interaction Model of Client Health Behavior serves as the theoretical framework for this study. The primary outcome measure is satisfaction and this will be assessed using mixed methods (quantitative and qualitative data). Secondary outcome measures include disease activity, quality of life, adherence to treatment, use of the telenursing service, and cost. We plan to enroll 56 children. DISCUSSION: The telenursing consultation is designed to support parents and children/adolescents during the course of the disease with regular follow-up. This project is novel because it is based on a theoretical standardized intervention, yet it allows for individualized care. We expect this trial to confirm the importance of support by a clinical specialist nurse in improving outcomes for children and adolescents with inflammatory rheumatisms. TRIAL REGISTRATION: ClinicalTrial.gov identifier: NCT01511341 (December 1st, 2012).
Resumo:
The peroxisome proliferator-activated receptor (PPAR) family comprises three distinct isotypes: PPARalpha, PPARbeta/delta and PPARgamma. PPARs are nuclear hormone receptors that mediate the effects of fatty acids and their derivatives at the transcriptional level. Until recently, the characterisation of the important role of PPARalpha in fatty acid oxidation and of PPARgamma in lipid storage contrasted with the sparse information concerning PPARbeta/delta. However, evidence is now emerging for a role of PPARbeta/delta in tissue repair and energy homeostasis. Experiments with tissue-specific overexpression of PPARbeta/delta or treatment of mice with selective PPARbeta/delta agonists demonstrated that activation of PPARbeta/delta in vivo increases lipid catabolism in skeletal muscle, heart and adipose tissue and improves the serum lipid profile and insulin sensitivity in several animal models. PPARbeta/delta activation also prevents the development of obesity and improves cholesterol homeostasis in obesity-prone mouse models. These new insights into PPARbeta/delta functions suggest that targeting PPARbeta/delta may be helpful for treating disorders associated with the metabolic syndrome. Although these perspectives are promising, several independent and contradictory reports raise concerns about the safety of PPARbeta/delta ligands with respect to tumourigenic activity in the gut. Thus, it appears that further exploration of PPARbeta/delta functions is necessary to better define its potential as a therapeutic target.
Resumo:
This article focuses on work disability and sick leave and their cost; it also discusses the value of vocational rehabilitation programmes in rheumatic conditions such as rheumatoid arthritis, ankylosing spondylitis, hip and knee osteoarthritis. It acknowledges the importance of work not only for the worker who has one of these diseases but also for the public purse. Much can be done to improve the health of the persons and reduce their disability and its impact in the workplace which will have an important effect on their and their family's quality of life. It is important that neither rehabilitation nor vocational rehabilitation are regarded as bolt-on activities after drug treatment but are seen as an integral part of effective management. Publications dealing with return to work are relatively common in rheumatoid arthritis, less common in ankylosing spondylitis and relatively rare in osteoarthritis. Vocational rehabilitation programmes should aim to facilitate job retention or, failing that, to improve the ability to return to work. The process must be started with in the health arena and it has to be recognised that slow or poor practice in the health service can jeopardise the patient's work potential
Resumo:
Main developmental programs are highly conserved among species of the animal kingdom. Improper execution of these programs often leads to progression of various diseases and disorders. Here we focused on Drosophila wing tissue morphogenesis, a fairly complex developmental program, one of the steps of which - apposition of the dorsal and ventral wing sheets during metamorphosis - is mediated by integrins. Disruption of this apposition leads to wing blistering which serves as an easily screenable phenotype for components regulating this process. By means of RNAi-silencing technique and the blister phenotype as readout, we identify numerous novel proteins potentially involved in wing sheet adhesion. Remarkably, our results reveal not only participants of the integrin-mediated machinery, but also components of other cellular processes, e.g. cell cycle, RNA splicing, and vesicular trafficking. With the use of bioinformatics tools, these data are assembled into a large blisterome network. Analysis of human orthologues of the Drosophila blisterome components shows that many disease-related genes may contribute to cell adhesion implementation, providing hints on possible mechanisms of these human pathologies.
Resumo:
Summary The proinflammatory cytokine macrophage migration inhibitory factor (MIF) has emerged as a central mediator of inflammation and innate immune defense against infections. MIF has been shown to play an important role in the pathogenesis of infectious diseases like sepsis, tuberculosis and autoimmune inflammatory diseases, such as arthritis, inflammatory bowel disease and asthma. Two functional polymorphisms of the MIF gene promoter, a five to eight CATT repeat microsatellite at position -794 and a G/C SNP at position -173, have been associated with increased susceptibility to or severity of autoimmune inflammatory diseases like arthritis, colitis and atopy. The aim of this thesis was to define whether, and if so by which mechanisms, MIF gene polymorphisms influence the susceptibility to or the outcome of one of the most severe and one of the most prevalent infectious diseases: meningococcal sepsis and tuberculosis, respectively. The results of the comparison between 1106 patients suffering from severe meningococcal infections and 434 healthy volunteers showed that carriers of the CATT5-5 genotype were protected from meningococcemia. A transmission disequilibrium test involving 106 families confirmed this association. At baseline and after stimulation with Neisseria meningitidis, the CATT5 MIF promoter drove lower transcriptional activity than the CATT6 or CATT7 alleles in human monocytic cells and whole blood of CATT5-5 healthy individuals tended to produce less MIF than whole blood of CATT6-6 individuals. Beyond, we describe several new MIF gene polymorphisms in Africans. Genotyping the CATT microsatellite and the -173*G/C SNP revealed great genetic diversity in six African ethnic groups. Comparing 471 African tuberculosis cases and 932 matched healthy controls, we observed ethnicity dependent associations of the -173*G/C and the CATT5-8 with susceptibility to or severity of tuberculosis, but confirmation in larger cohorts ìs needed. In conclusion, we report that homozygous carriage of a low expression allele of the MIF gene protects from meningococcal disease. These results support the concept that analyses of MIF genotypes in patients with sepsis may help to classify patients into risk categories and to identify those patients who may benefit from anti-MIF therapeutic strategies.
Resumo:
ABSTRACT Allergic asthma is a major complication of atopy. Its severity correlates with the presence of activated T lymphocytes and eosinophils in the bronchoalveolar lavage fluid (BALF). Mechanisms that protect against asthma are poorly understood. Based on oral models of mucosal tolerance induction, models using the nasal route showed that uptake of important amounts of antigen can induce tolerance and reverse the allergic phenotype. 1L-10 producing regulatory T cells were proposed as key players in tolerance induction, but other players, e.g. dendritic cells (DC), B cells and epithelial cells may have to be taken into consideration. The objective of the present study is to characterize the effects of a therapeutic intranasal treatment (INT) in a murine model of asthma and to determine, in this model, the cellular and molecular mechanisms leading to protection against asthma. First, we established an asthma model by sensitizing the BALB/c mouse to ovalbumin (OVA) by two intraperitoneal injections of alum-adsorbed OVA and three inhalations of aerosolized OVA. Then OVA was applied to the nasal mucosa of OVA- sensitized mice. Mice were later re-exposed to OVA aerosols to assess the protection induced by OVA INT. OVA sensitization induced strong eosinophil recruitment, OVA-specific T cell proliferation and IgE production. Three intranasal treatments at 24-hour intervals with 1.5 mg OVA drastically reduced inflammatory cell recruitment into the BALF and inhibited OVA-specific IgE production upon allergen re-exposure. T cell proliferation in ex vivo bronchial lymph node (BLN) cells was inhibited, as well as TH2 cytokine production. Protection against OVA-induced bronchial inflammation was effective for an extended period of time and treated mice resisted a second re-exposure. Transfer of CD4+ cells from BLN and lungs of OVA-treated mice protected asthmatic recipient mice from subsequent aerosol challenge indicating an involvement of CD4+ T regulatory cells in this protection. RESUME L'asthme allergique est une manifestation clinique majeure de l'atopie. La sévérité de l'asthme est liée à la présence de lymphocytes T activés ainsi que d'éosinophiles dans le lavage broncho-alvéolaire (LBA). Les mécanismes permettant de se prémunir contre l'asthme sont mal connus. Basés sur des modèles muqueux d'induction de tolérance par la voie orale, des modèles utilisant la voie nasale ont montré que d'importantes quantités d'antigène peuvent induire une tolérance et ainsi reverser le phénotype allergique. Des cellules régulatrices produisant de l'IL-10 pourraient jouer un rôle clé dans l'induction de la tolérance mais d'autres acteurs tels que les cellules dendritiques, les cellules B et les cellules épithéliales doivent aussi être prises en compte. L'objectif de la présente étude est de caractériser les effets d'un traitement intranasal thérapeutique dans un modèle murin d'asthme et de déterminer dans ce modèle les mécanismes cellulaires et moléculaires conférant une protection contre l'asthme. En premier lieu, un modèle d'asthme allergique a été établi en sensibilisant des souris BALB/c à l'ovalbumine (OVA) par deux injections intraperitonéales d'OVA adsorbé sur de l'alum et trois séances d'OVA en aérosol. Dans un second temps, de l'OVA a été administrée sur la muqueuse nasale des souris sensibilisées à l'OVA. Les souris furent ensuite challengées par des aérosols d'OVA afin d'évaluer la protection conférée par le traitement intranasal à l'OVA. La sensibilisation à l'OVA a induit un fort recrutement d'éosinophiles, une réponse proliférative des cellules T à l'OVA ainsi qu'une production d'lgE spécifiques. Trois traitements intranasaux à 24 heures d'intervalle avec 1.5 mg d'OVA ont permis de réduire drastiquement le recrutement des cellules inflammatoires dans le LBA ainsi que d'inhiber la production d'lgE spécifiques à l'OVA produits lors d'une ré-exposition à l'OVA. La prolifération en réponse à l'OVA de cellules extraites ex vivo de ganglions bronchiques a, elle aussi, été inhibée de même que la production de cytokines TH2. La protection contre l'inflammation provoquée par l'aérosol est efficace pour une longue période et les souris traitées résistent à une seconde ré- exposition. Le transfert de cellules CD4+ issues de ganglions bronchiques et de poumons de souris traitées à l'OVA protège les souris asthmatiques receveuses contre les effets inflammatoires d'un aérosol, indiquant que des cellules T CD4+ régulatrices pourraient être impliquées dans cette protection. RESUME DESTINE A UN LARGE PUBLIC L'asthme est une affection des voies respiratoires qui se caractérise par une contraction de la musculature des voies aériennes, une production de mucus et d'anticorps de l'allergie (IgE). On parle d'asthme allergique lorsque les facteurs déclenchant l'asthme sont des allergènes inhalés tels que acariens, pollens ou poils d'animaux. Le système immunitaire des patients asthmatiques a un défaut de programmation qui le rend réactif à des substances qui sont normalement inoffensives. Le traitement actuel de l'asthme repose sur le soulagement des symptômes grâce à des produits à base de stéroïdes. Les techniques permettant de reprogrammer le système immunitaire (immunothérapie) ne sont pas efficaces pour tous les antigènes et prennent beaucoup de temps. En conséquence, il est nécessaire de mieux comprendre les mécanismes sous-tendant une telle reprogrammation afin d'en améliorer le rendement et l'efficacité. Dans ce but, des modèles d'immunothérapie ont été mis au point chez la souris. Ils permettent une plus grande liberté d'investigation. Dans cette étude, un modèle d'asthme allergique dans la souris a été établi par une sensibilisation à un antigène particulier : l'ovalbumine (OVA). Ce modèle présente les caractéristiques principales de l'asthme humain : recrutement de cellules inflammatoires dans les poumons, augmentation de la production d'anticorps et de la résistance des bronches aux flux respiratoires. Cette souris asthmatique a ensuite été traitée par application nasale d'OVA. Comparées aux souris non traitées, les souris traitées à l'OVA ont moins de cellules inflammatoires dans leurs poumons et produisent moins d'anticorps IgE. D'autres marqueurs inflammatoires sont aussi fortement diminués. Des cellules de poumons ou de ganglions bronchiques prélevées sur des souris traitées injectées dans des souris asthmatiques améliorent les symptômes de l'asthme. Ces cellules pourraient donc avoir un rôle régulateur dans l'asthme. Les caractériser et les étudier afin d'être capable de les générer est crucial pour les futures thérapies de l'asthme.
Resumo:
World health organization
Resumo:
Systemic lupus erythematosus and primary Sjögren's syndrom are the two major connective tissue diseases. A better knowledge of their physiopathology allows us today to propose an adapted therapy. Moreover progress concerns the oldest treatment, hydroxychloroquine, and biotherapy. Hydroxychloroquine is still an actual treatment for lupus, its positive effects are better understood today. Nevertheless it does not seem to be efficient to treat primitive Sjögren. Biotherapy targeting B lymphocytes seems efficient in these two connective tissue diseases. Anti TNF therapy is not recommended and seems to induce connective tissue diseases. The real news is the recent approval and reimbursement in Switzerland of the new drug belimumab (Benlysta) in case of moderate lupus.
Resumo:
Relentless progress in our knowledge of the nature and functional consequences of human genetic variation allows for a better understanding of the protracted battle between pathogens and their human hosts. Multiple polymorphisms have been identified that impact our response to infections or to anti-infective drugs, and some of them are already used in the clinic. However, to make personalized medicine a reality in infectious diseases, a sustained effort is needed not only in research but also in genomic education.
Resumo:
Objective To construct and validate markers of vulnerability of women to STDs/HIV, taking into consideration the importance of STDs/HIV. Method Methodological study carried out in three stages: 1) systematic review and identification of elements of vulnerability in the scientific production; 2) selection of elements of vulnerability, and development of markers; 3) establishment of the expert group and validation of the markers (content validity). Results Five markers were validated: no openness in the relationship to discuss aspects related to prevention of STDs/HIV; no perception of vulnerability to STDs/HIV; disregard of vulnerability to STDs/ HIV; not recognizing herself as the subject of sexual and reproductive rights; actions of health professionals that limit women’s access to prevention of STDs/HIV. Each marker contains three to eleven components. Conclusion The construction of such markers constituted an instrument, presented in another publication, which can contribute to support the identification of vulnerabilities of women in relation to STDs/HIV in the context of primary health care services. The markers constitute an important tool for the operationalization of the concept of vulnerability in primary health care and to promote inter/multidisciplinary and inter/multi-sectoral work processes.