939 resultados para acoustic indices
Resumo:
Numerous studies examine decadal-scale variability in basin-scale parameters in the Northern Pacific. Characterizing such interannual-to-interdecadal variability is essential to identifying long-term climate changes. The Pacific Fisheries Environmental Group (PFEG) coastal upwelling indices display variability on these time scales and may help explain the mechanisms responsible for such climate variability. ... In this study, examination of 49-year time series of monthly mean upwelling indices at the 15 PFEG-standard positions along the west coast of North America revealed variability on large spatial scales as well as temporal scales.
Resumo:
A key to understanding the causes for climate variability lies in understanding how atmospheric circulation influences regional climate. The goal of this research is to investigate the long-term relationships between atmospheric circulation and winter climate in the southwestern United States. Patterns of atmospheric circulation are described by circulation indices, and winter climate is defined as number of days with precipitation and mean maximum temperature for the winter wet season, November through March. Records of both circulation indices and climate variables were reconstructed with tree-ring chronologies for the period 1702-1983. The years of the highest and lowest values of circulation indices and climate variables were compared in order to investigate possible spatial and temporal relationships between extremes in circulation and climate.
Resumo:
Fecundity of threatened catfish Mystus montanus was estimated from a collection of gravid females, which ranged from 290 to 27,972 according to body length and weight. The relationship between fecundity and BL, BW, GL and GW was analyzed by linear regression, which showed both positive and negative correlation. Gonado-somatic index (GSI), hepato-somatic index (HSI) and spleen-somatic index (SSI) ranged from 0.135 to 21.28, 0.358 to 21.33 and 0.126 to 1.08 in females and the corresponding values for males were 0.17 to 10.68, 0.619 to 3.25 and 1.25 to 2.33 respectively.
Resumo:
Progress in simulating chevron nozzle jet flows using ILES/RANS-ILES approaches and using the Ffowcs Williams and Hawkings (FW-H) surface integral method to predict the radiated far field sound is presented in this paper. With the focus on the realistic chevron geometries, SMC001 and SMC006, coarse and fine meshes are generated in the range of 3∼13 million mesh cells. Throughout this work, to minimize numerical dissipation introduced by mesh quality issues, the hexahedral cell type is used. Numerical simulations are then carried out with cell-vertex and cell-centered codes. Despite the modest grids, mean velocities and turbulent statistics are found to be in reasonable accord with measurements. Also, far field sound levels predicted by the FW-H post processor are encouraging. Copyright © 2008 by the American Institute of Aeronautics and Astronautics, Inc.
Resumo:
Lab-on-a-chip (LOC) is one of the most important microsystem applications with promise for use in microanalysis, drug development, diagnosis of illness and diseases etc. LOC typically consists of two main components: microfluidics and sensors. Integration of microfluidics and sensors on a single chip can greatly enhance the efficiency of biochemical reactions and the sensitivity of detection, increase the reaction/detection speed, and reduce the potential cross-contamination, fabrication time and cost etc. However, the mechanisms generally used for microfluidics and sensors are different, making the integration of the two main components complicated and increases the cost of the systems. A lab-on-a-chip system based on a single surface acoustic wave (SAW) actuation mechanism is proposed. SAW devices were fabricated on nanocrystalline ZnO thin films deposited on Si substrates using sputtering. Coupling of acoustic waves into a liquid induces acoustic streaming and motion of droplets. A streaming velocity up to ∼ 5cm/s and droplet pumping speeds of ∼lcm/s were obtained. It was also found that a higher order mode wave, the Sezawa wave is more effective in streaming and transportation of microdroplets. The ZnO SAW sensor has been used for prostate antigen/antibody biorecognition systems, demonstrated the feasibility of using a single actuation mechanism for lab-on-a-chip applications. © 2010 Materials Research Society.
Resumo:
The feeding patterns with respect to quality and quantity of food of silver barb, Barbodes gonionotus varied with their size and development. The results indicated that the fish in the size group I (7-25 mm TL) were fairly omnivore with particular liking for rotifera, green and blue-green algae while the size group II (25.1-44 mm TL) and III (44.1-55 mm TL) were omnivore with higher tendency of feeding on debris, aquatic plants, green algae, blue-green algae and rotifera. However, the fish of the size group IV (55.1-80 mm TL) were found to be herbivore with feeding preference for aquatic plants, green and blue-green algae. In all the size groups, debris was the most dominant food item. Feeding preference of the fish showed clear ontogenetic shift. The electivity indices revealed that the fish were selective feeder.
Resumo:
The scattering of sound from a point source by a Rankine vortex is investigated numerically by solving the Euler equations with the novel high-resolution CABARET method. For several Mach numbers of the vortex, the time-average amplitudes of the scattered field obtained from the numerical modeling are compared with the theoretical scaling laws' predictions. Copyright © 2009 by Sergey Karabasov.