971 resultados para absolute bar
Resumo:
The construction of a reliable, practically useful prediction rule for future response is heavily dependent on the "adequacy" of the fitted regression model. In this article, we consider the absolute prediction error, the expected value of the absolute difference between the future and predicted responses, as the model evaluation criterion. This prediction error is easier to interpret than the average squared error and is equivalent to the mis-classification error for the binary outcome. We show that the distributions of the apparent error and its cross-validation counterparts are approximately normal even under a misspecified fitted model. When the prediction rule is "unsmooth", the variance of the above normal distribution can be estimated well via a perturbation-resampling method. We also show how to approximate the distribution of the difference of the estimated prediction errors from two competing models. With two real examples, we demonstrate that the resulting interval estimates for prediction errors provide much more information about model adequacy than the point estimates alone.
Resumo:
BACKGROUND: There is evidence for the superiority of two-implant overdentures over complete dentures in the mandible. Various anchorage devices were used to provide stability to overdentures. The aim of the present study was to compare two designs of a rigid bar connecting two mandibular implants. MATERIALS AND METHODS: Completely edentulous patients received a new denture in the maxilla and an implant-supported overdenture in the mandible. They were randomly allocated to two groups (A or B) with regard to the bar design. A standard U-shaped bar (Dolder bar) was used connecting the two implants in a straight line. For comparison, precision attachments were soldered distal to the bar copings. Group A started the study with the standard bar (S-bar), while group B started with the attachment-bar (A-bar). After 3 months, they had to answer a questionnaire (visual analogue scale [VAS]); then the bar design was changed in both groups. After a period of another 3 months, the patients had to answer the same questions; then they had the choice to keep their preferred bar. Now the study period was extended to another year of observation, and the patients answered again the same questionnaire. In vivo force measurements were carried out with both bar types at the end of the test periods. The prosthetic maintenance service carried out during the 6-month period was recorded for both bar types in both groups. Statistical analysis as performed with the SPSS statistical package (SPSS Inc., Chicago, IL, USA). RESULTS: Satisfaction was high in both groups. Group B, who had entered the study with the attachment bar, gave slightly better ratings to this type for four items, while in group A, no differences were found. At the end of the 6-month comparison period, all but one patient wished to continue to wear the attachment bar. Prosthetic service was equal in groups A and B, but the total number of interventions is significantly higher in the attachment bar. Force patterns of maximum biting were similar in both bar designs, but exhibited significantly higher axial forces in the attachment bar. CONCLUSIONS: Both bar designs provide good retention and functional comfort. High stability appears to be an important factor for the patients' satisfaction and oral comfort. Rigid retention results in a higher force impact and appears to evoke the need for the retightening of occlusal screws, resulting in more maintenance service.
Resumo:
Two volcanic debris avalanche deposits (VDADs), both attributed to sector collapse at Volcán Barú, Panama, have been identified after an investigation of deposits that covered more than a thousand square kilometers. The younger Barriles Deposit is constrained by two radiocarbon ages that are ~9 ka; the older Caisán Deposit is at or beyond the radiocarbon range, >43,500 ybp. The total runout length of the Caisán Deposit was ~50 km and it covers 1190 km2. The Barriles Deposit extended to about 45 km and covered an area of 966 km2, overlapping most of the Caisán. The VDADs are blanketed by pyroclastic deposits and contain a predominance of andesitic material likely representing volcanic dome rock which accumulated above the active vent at Barú before collapsing. Despite heavy vegetation in the field area, over 4000 individual hummocks were digitized from aerial photography. Statistical analysis of hummock locations and geometries depict flow patterns of highly- fragmented material reflecting the effects of underlying topography and also help to define the limit of Barriles’ shorter termination. Barriles and Caisán are primarily unconfined, subaerial volcanic deposits that are among the world’s most voluminous. Calculated through two different geospatial processes, thickness values from field measurements and inferences yield volumes >30 km23 for both deposits. VDADs of comparable scale come from Mount Shasta, USA; Socompa, Chile/Argentina; and Shiveluch, Russia. Currently, the modern edifice is 200-400m lower than the pre-collapse Barriles and Caisán summits and only 16-25% of the former edifice has been replaced since the last failure.
Resumo:
Strain rate significantly affects the strength of a material. The Split-Hopkinson Pressure Bar (SHPB) was initially used to study the effects of high strain rate (~103 1/s) testing of metals. Later modifications to the original technique allowed for the study of brittle materials such as ceramics, concrete, and rock. While material properties of wood for static and creep strain rates are readily available, data on the dynamic properties of wood are sparse. Previous work using the SHPB technique with wood has been limited in scope to variability of only a few conditions and tests of the applicability of the SHPB theory on wood have not been performed. Tests were conducted using a large diameter (3.0 inch (75 mm)) SHPB. The strain rate and total strain applied to a specimen are dependent on the striker bar length and velocity at impact. Pulse shapers are used to further modify the strain rate and change the shape of the strain pulse. A series of tests were used to determine test conditions necessary to produce a strain rate, total strain, and pulse shape appropriate for testing wood specimens. Hard maple, consisting of sugar maple (Acer saccharum) and black maple (Acer nigrum), and eastern white pine (Pinus strobus) specimens were used to represent a dense hardwood and a low-density soft wood. Specimens were machined to diameters of 2.5 and 3.0 inches and an assortment of lengths were tested to determine the appropriate specimen dimensions. Longitudinal specimens of 1.5 inch length and radial and tangential specimens of 0.5 inch length were found to be most applicable to SHPB testing. Stress/strain curves were generated from the SHPB data and validated with 6061-T6 aluminum and wood specimens. Stress was indirectly corroborated with gaged aluminum specimens. Specimen strain was assessed with strain gages, digital image analysis, and measurement of residual strain to confirm the strain calculated from SHPB data. The SHPB was found to be a useful tool in accurately assessing the material properties of wood under high strain rates (70 to 340 1/s) and short load durations (70 to 150 μs to compressive failure).
Resumo:
In-cylinder pressure transducers have been used for decades to record combustion pressure inside a running engine. However, due to the extreme operating environment, transducer design and installation must be considered in order to minimize measurement error. One such error is caused by thermal shock, where the pressure transducer experiences a high heat flux that can distort the pressure transducer diaphragm and also change the crystal sensitivity. This research focused on investigating the effects of thermal shock on in-cylinder pressure transducer data quality using a 2.0L, four-cylinder, spark-ignited, direct-injected, turbo-charged GM engine. Cylinder four was modified with five ports to accommodate pressure transducers of different manufacturers. They included an AVL GH14D, an AVL GH15D, a Kistler 6125C, and a Kistler 6054AR. The GH14D, GH15D, and 6054AR were M5 size transducers. The 6125C was a larger, 6.2mm transducer. Note that both of the AVL pressure transducers utilized a PH03 flame arrestor. Sweeps of ignition timing (spark sweep), engine speed, and engine load were performed to study the effects of thermal shock on each pressure transducer. The project consisted of two distinct phases which included experimental engine testing as well as simulation using a commercially available software package. A comparison was performed to characterize the quality of the data between the actual cylinder pressure and the simulated results. This comparison was valuable because the simulation results did not include thermal shock effects. All three sets of tests showed the peak cylinder pressure was basically unaffected by thermal shock. Comparison of the experimental data with the simulated results showed very good correlation. The spark sweep was performed at 1300 RPM and 3.3 bar NMEP and showed that the differences between the simulated results (no thermal shock) and the experimental data for the indicated mean effective pressure (IMEP) and the pumping mean effective pressure (PMEP) were significantly less than the published accuracies. All transducers had an IMEP percent difference less than 0.038% and less than 0.32% for PMEP. Kistler and AVL publish that the accuracy of their pressure transducers are within plus or minus 1% for the IMEP (AVL 2011; Kistler 2011). In addition, the difference in average exhaust absolute pressure between the simulated results and experimental data was the greatest for the two Kistler pressure transducers. The location and lack of flame arrestor are believed to be the cause of the increased error. For the engine speed sweep, the torque output was held constant at 203 Nm (150 ft-lbf) from 1500 to 4000 RPM. The difference in IMEP was less than 0.01% and the PMEP was less than 1%, except for the AVL GH14D which was 5% and the AVL GH15DK which was 2.25%. A noticeable error in PMEP appeared as the load increased during the engine speed sweeps, as expected. The load sweep was conducted at 2000 RPM over a range of NMEP from 1.1 to 14 bar. The difference in IMEP values were less 0.08% while the PMEP values were below 1% except for the AVL GH14D which was 1.8% and the AVL GH15DK which was at 1.25%. In-cylinder pressure transducer data quality was effectively analyzed using a combination of experimental data and simulation results. Several criteria can be used to investigate the impact of thermal shock on data quality as well as determine the best location and thermal protection for various transducers.
Resumo:
This dissertation established a standard foam index: the absolute foam index test. This test characterized a wide range of coal fly ash by the absolute volume of air-entraining admixture (AEA) necessary to produce a 15-second metastable foam in a coal fly ash-cement slurry in a specified time. The absolute foam index test was used to characterize fly ash samples having loss on ignition (LOI) values that ranged from 0.17 to 23.3 %wt. The absolute foam index characterized the fly ash samples by absolute volume of AEA, defined as the amount of undiluted AEA solution added to obtain a 15-minute endpoint signified by 15-second metastable foam. Results were compared from several foam index test time trials that used different initial test concentrations to reach termination at selected times. Based on the coefficient of variation (CV), a 15-minute endpoint, with limits of 12 to 18 minutes was chosen. Various initial test concentrations were used to accomplish consistent contact times and concentration gradients for the 15-minute test endpoint for the fly ash samples. A set of four standard concentrations for the absolute foam index test were defined by regression analyses and a procedure simplifying the test process. The set of standard concentrations for the absolute foam index test was determined by analyzing experimental results of 80 tests on coal fly ashes with loss on ignition (LOI) values ranging from 0.39 to 23.3 wt.%. A regression analysis informed selection of four concentrations (2, 6, 10, and 15 vol.% AEA) that are expected to accommodate fly ashes with 0.39 to 23.3 wt.% LOI, depending on the AEA type. Higher concentrations should be used for high-LOI fly ash when necessary. A procedure developed using these standard concentrations is expected to require only 1-3 trials to meet specified endpoint criteria for most fly ashes. The AEA solution concentration that achieved the metastable foam in the foam index test was compared to the AEA equilibrium concentration obtained from the direct adsorption isotherm test with the same fly ash. The results showed that the AEA concentration that satisfied the absolute foam index test was much less than the equilibrium concentration. This indicated that the absolute foam index test was not at or near equilibrium. Rather, it was a dynamic test where the time of the test played an important role in the results. Even though the absolute foam index was not an equilibrium condition, a correlation was made between the absolute foam index and adsorption isotherms. Equilibrium isotherm equations obtained from direct isotherm tests were used to calculate the equilibrium concentrations and capacities of fly ash from 0.17 to 10.5% LOI. The results showed that the calculated fly ash capacity was much less than capacities obtained from isotherm tests that were conducted with higher initial concentrations. This indicated that the absolute foam index was not equilibrium. Rather, the test is dynamic where the time of the test played an important role in the results. Even though the absolute foam index was not an equilibrium condition, a correlation was made between the absolute foam index and adsorption isotherms for fly ash of 0.17 to 10.5% LOI. Several batches of mortars were mixed for the same fly ash type increasing only the AEA concentration (dosage) in each subsequent batch. Mortar air test results for each batch showed for each increase in AEA concentration, air contents increased until a point where the next increase in AEA concentration resulted in no increase in air content. This was maximum air content that could be achieved by the particular mortar system; the system reached its air capacity at the saturation limit. This concentration of AEA was compared to the critical micelle concentration (CMC) for the AEA and the absolute foam index.