896 resultados para Whole genome mapping
Resumo:
The mouse is the best model system for the study of mammalian genetics and physiology. Because of the feasibility and importance of studying genetic crosses, the mouse genetic map has received tremendous attention in recent years. It currently contains over 14,000 genetically mapped markers, including 700 mutant loci, 3500 genes, and 6500 simple sequence length polymorphisms (SSLPs). The mutant loci and genes allow insights and correlations concerning physiology and development. The SSLPs provide highly polymorphic anchor points that allow inheritance to be traced in any cross and provide a scaffold for assembling physical maps. Adequate physical mapping resources--notably large-insert yeast artificial chromosome (YAC) libraries--are available to support positional cloning projects based on the genetic map, but a comprehensive physical map is still a few years away. Large-scale sequencing efforts have not yet begun in mouse, but comparative sequence analysis between mouse and human is likely to provide tremendous information about gene structure and regulation.
Resumo:
Fluorescence in situ hybridization (FISH) is a powerful tool for physical mapping in human and other mammalian species. However, application of the FISH technique has been limited in plant species, especially for mapping single- or low-copy DNA sequences, due to inconsistent signal production in plant chromosome preparations. Here we demonstrate that bacterial artificial chromosome (BAC) clones can be mapped readily on rice (Oryza sativa L.) chromosomes by FISH. Repetitive DNA sequences in BAC clones can be suppressed efficiently by using rice genomic DNA as a competitor in the hybridization mixture. BAC clones as small as 40 kb were successfully mapped. To demonstrate the application of the FISH technique in physical mapping of plant genomes, both anonymous BAC clones and clones closely linked to a rice bacterial blight-resistance locus, Xa21, were chosen for analysis. The physical location of Xa21 and the relationships among the linked clones were established, thus demonstrating the utility of FISH in plant genome analysis.
Resumo:
Next-generation sequencing of complete genomes has given researchers unprecedented levels of information to study the multifaceted evolutionary changes that have shaped elite plant germplasm. In conjunction with population genetic analytical techniques and detailed online databases, we can more accurately capture the effects of domestication on entire biological pathways of agronomic importance. In this study, we explore the genetic diversity and signatures of selection in all predicted gene models of the storage starch synthesis pathway of Sorghum bicolor, utilizing a diversity panel containing lines categorized as either ‘Landraces’ or ‘Wild and Weedy’ genotypes. Amongst a total of 114 genes involved in starch synthesis, 71 had at least a single signal of purifying selection and 62 a signal of balancing selection and others a mix of both. This included key genes such as STARCH PHOSPHORYLASE 2 (SbPHO2, under balancing selection), PULLULANASE (SbPUL, under balancing selection) and ADP-glucose pyrophosphorylases (SHRUNKEN2, SbSH2 under purifying selection). Effectively, many genes within the primary starch synthesis pathway had a clear reduction in nucleotide diversity between the Landraces and wild and weedy lines indicating that the ancestral effects of domestication are still clearly identifiable. There was evidence of the positional rate variation within the well-characterized primary starch synthesis pathway of sorghum, particularly in the Landraces, whereby low evolutionary rates upstream and high rates downstream in the metabolic pathway were expected. This observation did not extend to the wild and weedy lines or the minor starch synthesis pathways.
Resumo:
Next-generation sequencing of complete genomes has given researchers unprecedented levels of information to study the multifaceted evolutionary changes that have shaped elite plant germplasm. In conjunction with population genetic analytical techniques and detailed online databases, we can more accurately capture the effects of domestication on entire biological pathways of agronomic importance. In this study, we explore the genetic diversity and signatures of selection in all predicted gene models of the storage starch synthesis pathway of Sorghum bicolor, utilizing a diversity panel containing lines categorized as either ‘Landraces’ or ‘Wild and Weedy’ genotypes. Amongst a total of 114 genes involved in starch synthesis, 71 had at least a single signal of purifying selection and 62 a signal of balancing selection and others a mix of both. This included key genes such as STARCH PHOSPHORYLASE 2 (SbPHO2, under balancing selection), PULLULANASE (SbPUL, under balancing selection) and ADP-glucose pyrophosphorylases (SHRUNKEN2, SbSH2 under purifying selection). Effectively, many genes within the primary starch synthesis pathway had a clear reduction in nucleotide diversity between the Landraces and wild and weedy lines indicating that the ancestral effects of domestication are still clearly identifiable. There was evidence of the positional rate variation within the well-characterized primary starch synthesis pathway of sorghum, particularly in the Landraces, whereby low evolutionary rates upstream and high rates downstream in the metabolic pathway were expected. This observation did not extend to the wild and weedy lines or the minor starch synthesis pathways.
Resumo:
Cauliflower (Brassica oleracea var. botrytis) is a vernalization-responsive crop. High ambient temperatures delay harvest time. The elucidation of the genetic regulation of floral transition is highly interesting for a precise harvest scheduling and to ensure stable market supply. This study aims at genetic dissection of temperature-dependent curd induction in cauliflower by genome-wide association studies and gene expression analysis. To assess temperature dependent curd induction, two greenhouse trials under distinct temperature regimes were conducted on a diversity panel consisting of 111 cauliflower commercial parent lines, genotyped with 14,385 SNPs. Broad phenotypic variation and high heritability (0.93) were observed for temperature-related curd induction within the cauliflower population. GWA mapping identified a total of 18 QTL localized on chromosomes O1, O2, O3, O4, O6, O8, and O9 for curding time under two distinct temperature regimes. Among those, several QTL are localized within regions of promising candidate flowering genes. Inferring population structure and genetic relatedness among the diversity set assigned three main genetic clusters. Linkage disequilibrium (LD) patterns estimated global LD extent of r(2) = 0.06 and a maximum physical distance of 400 kb for genetic linkage. Transcriptional profiling of flowering genes FLOWERING LOCUS C (BoFLC) and VERNALIZATION 2 (BoVRN2) was performed, showing increased expression levels of BoVRN2 in genotypes with faster curding. However, functional relevance of BoVRN2 and BoFLC2 could not consistently be supported, which probably suggests to act facultative and/or might evidence for BoVRN2/BoFLC-independent mechanisms in temperature regulated floral transition in cauliflower. Genetic insights in temperature-regulated curd induction can underpin genetically informed phenology models and benefit molecular breeding strategies toward the development of thermo-tolerant cultivars.
Resumo:
2016
Resumo:
The New Zealand creative sector was responsible for almost 121,000 jobs at the time of the 2006 Census (6.3% of total employment). These are divided between • 35,751 creative specialists – persons employed doing creative work in creative industries • 42,300 support workers - persons providing management and support services in creative industries • 42,792 embedded creative workers – persons engaged in creative work in other types of enterprise The most striking feature of this breakdown is the fact that the largest group of creative workers are employed outside the creative industries, i.e. in other types of businesses. Even within the creative industries, there are fewer people directly engaged in creative work than in providing management and support. Creative sector employees earned incomes of approximately $52,000 per annum at the time of the 2006 Census. This is relatively uniform across all three types of creative worker, and is significantly above the average for all employed persons (of approximately $40,700). Creative employment and incomes were growing strongly over both five year periods between the 1996, 2001 and 2006 Censuses. However, when we compare creative and general trends, we see two distinct phases in the development of the creative sector: • rapid structural growth over the five years to 2001 (especially led by developments in ICT), with creative employment and incomes increasing rapidly at a time when they were growing modestly across the whole economy; • subsequent consolidation, with growth driven by more by national economic expansion than structural change, and creative employment and incomes moving in parallel with strong economy-wide growth. Other important trends revealed by the data are that • the strongest growth during the decade was in embedded creative workers, especially over the first five years. The weakest growth was in creative specialists, with support workers in creative industries in the middle rank, • by far the strongest growth in creative industries’ employment was in Software & digital content, which trebled in size over the decade Comparing New Zealand with the United Kingdom and Australia, the two southern hemisphere nations have significantly lower proportions of total employment in the creative sector (both in creative industries and embedded employment). New Zealand’s and Australia’s creative shares in 2001 were similar (5.4% each), but in the following five years, our share has expanded (to 5.7%) whereas Australia’s fell slightly (to 5.2%) – in both cases, through changes in creative industries’ employment. The creative industries generated $10.5 billion in total gross output in the March 2006 year. Resulting from this was value added totalling $5.1b, representing 3.3% of New Zealand’s total GDP. Overall, value added in the creative industries represents 49% of industry gross output, which is higher than the average across the whole economy, 45%. This is a reflection of the relatively high labour intensity and high earnings of the creative industries. Industries which have an above-average ratio of value added to gross output are usually labour-intensive, especially when wages and salaries are above average. This is true for Software & Digital Content and Architecture, Design & Visual Arts, with ratios of 60.4% and 55.2% respectively. However there is significant variation in this ratio between different parts of the creative industries, with some parts (e.g. Software & Digital Content and Architecture, Design & Visual Arts) generating even higher value added relative to output, and others (e.g. TV & Radio, Publishing and Music & Performing Arts) less, because of high capital intensity and import content. When we take into account the impact of the creative industries’ demand for goods and services from its suppliers and consumption spending from incomes earned, we estimate that there is an addition to economic activity of: • $30.9 billion in gross output, $41.4b in total • $15.1b in value added, $20.3b in total • 158,100 people employed, 234,600 in total The total economic impact of the creative industries is approximately four times their direct output and value added, and three times their direct employment. Their effect on output and value added is roughly in line with the average over all industries, although the effect on employment is significantly lower. This is because of the relatively high labour intensity (and high earnings) of the creative industries, which generate below-average demand from suppliers, but normal levels of demand though expenditure from incomes. Drawing on these numbers and conclusions, we suggest some (slightly speculative) directions for future research. The goal is to better understand the contribution the creative sector makes to productivity growth; in particular, the distinctive contributions from creative firms and embedded creative workers. The ideas for future research can be organised into the several categories: • Understanding the categories of the creative sector– who is doing the business? In other words, examine via more fine grained research (at a firm level perhaps) just what is the creative contribution from the different aspects of the creative sector industries. It may be possible to categorise these in terms of more or less striking innovations. • Investigate the relationship between the characteristics and the performance of the various creative industries/ sectors; • Look more closely at innovation at an industry level e.g. using an index of relative growth of exports, and see if this can be related to intensity of use of creative inputs; • Undertake case studies of the creative sector; • Undertake case studies of the embedded contribution to growth in the firms and industries that employ them, by examining taking several high performing noncreative industries (in the same way as proposed for the creative sector). • Look at the aggregates – drawing on the broad picture of the extent of the numbers of creative workers embedded within the different industries, consider the extent to which these might explain aspects of the industries’ varied performance in terms of exports, growth and so on. • This might be able to extended to examine issues like the type of creative workers that are most effective when embedded, or test the hypothesis that each industry has its own particular requirements for embedded creative workers that overwhelms any generic contributions from say design, or IT.
Resumo:
Growing evidence suggests that a novel member of the Chlamydiales order, Waddlia chondrophila, is a potential agent of miscarriage in humans and abortion in ruminants. Due to the lack of genetic tools to manipulate chlamydia, genomic analysis is proving to be the most incisive tool in stimulating investigations into the biology of these obligate intracellular bacteria. 454/Roche and Solexa/Illumina technologies were thus used to sequence and assemble de novo the full genome of the first representative of the Waddliaceae family, W. chondrophila. The bacteria possesses a 2′116′312bp chromosome and a 15′593 bp low-copy number plasmid that might integrate into the bacterial chromosome. The Waddlia genome displays numerous repeated sequences indicating different genome dynamics from classical chlamydia which almost completely lack repetitive elements. Moreover, W. chondrophila exhibits many virulence factors also present in classical chlamydia, including a functional type III secretion system, but also a large complement of specific factors for resistance to host or environmental stresses. Large families of outer membrane proteins were identified indicating that these highly immunogenic proteins are not Chlamydiaceae specific and might have been present in their last common ancestor. Enhanced metabolic capability for the synthesis of nucleotides, amino acids, lipids and other co-factors suggests that the common ancestor of the modern Chlamydiales may have been less dependent on their eukaryotic host. The fine-detailed analysis of biosynthetic pathways brings us closer to possibly developing a synthetic medium to grow W. chondrophila, a critical step in the development of genetic tools. As a whole, the availability of the W. chondrophila genome opens new possibilities in Chlamydiales research, providing new insights into the evolution of members of the order Chlamydiales and the biology of the Waddliaceae.
Resumo:
Assurance of learning is a predominant feature in both quality enhancement and assurance in higher education. Assurance of learning is a process that articulates explicit program outcomes and standards, and systematically gathers evidence to determine the extent to which performance matches expectations. Benefits accrue to the institution through the systematic assessment of whole of program goals. Data may be used for continuous improvement, program development, and to inform external accreditation and evaluation bodies. Recent developments, including the introduction of the Tertiary Education and Quality Standards Agency (TEQSA) will require universities to review the methods they use to assure learning outcomes. This project investigates two critical elements of assurance of learning: 1. the mapping of graduate attributes throughout a program; and 2. the collection of assurance of learning data. An audit was conducted with 25 of the 39 Business Schools in Australian universities to identify current methods of mapping graduate attributes and for collecting assurance of learning data across degree programs, as well as a review of the key challenges faced in these areas. Our findings indicate that external drivers like professional body accreditation (for example: Association to Advance Collegiate Schools of Business (AACSB)) and TEQSA are important motivators for assuring learning, and those who were undertaking AACSB accreditation had more robust assurance of learning systems in place. It was reassuring to see that the majority of institutions (96%) had adopted an embedding approach to assuring learning rather than opting for independent standardised testing. The main challenges that were evident were the development of sustainable processes that were not considered a burden to academic staff, and obtainment of academic buy in to the benefits of assuring learning per se rather than assurance of learning being seen as a tick box exercise. This cultural change is the real challenge in assurance of learning practice.
Resumo:
Background The gene composition, gene order and structure of the mitochondrial genome are remarkably stable across bilaterian animals. Lice (Insecta: Phthiraptera) are a major exception to this genomic stability in that the canonical single chromosome with 37 genes found in almost all other bilaterians has been lost in multiple lineages in favour of multiple, minicircular chromosomes with less than 37 genes on each chromosome. Results Minicircular mt genomes are found in six of the ten louse species examined to date and three types of minicircles were identified: heteroplasmic minicircles which coexist with full sized mt genomes (type 1); multigene chromosomes with short, simple control regions, we infer that the genome consists of several such chromosomes (type 2); and multiple, single to three gene chromosomes with large, complex control regions (type 3). Mapping minicircle types onto a phylogenetic tree of lice fails to show a pattern of their occurrence consistent with an evolutionary series of minicircle types. Analysis of the nuclear-encoded, mitochondrially-targetted genes inferred from the body louse, Pediculus, suggests that the loss of mitochondrial single-stranded binding protein (mtSSB) may be responsible for the presence of minicircles in at least species with the most derived type 3 minicircles (Pediculus, Damalinia). Conclusions Minicircular mt genomes are common in lice and appear to have arisen multiple times within the group. Life history adaptive explanations which attribute minicircular mt genomes in lice to the adoption of blood-feeding in the Anoplura are not supported by this expanded data set as minicircles are found in multiple non-blood feeding louse groups but are not found in the blood-feeding genus Heterodoxus. In contrast, a mechanist explanation based on the loss of mtSSB suggests that minicircles may be selectively favoured due to the incapacity of the mt replisome to synthesize long replicative products without mtSSB and thus the loss of this gene lead to the formation of minicircles in lice.
Resumo:
Associations between single nucleotide polymorphisms (SNPs) at 5p15 and multiple cancer types have been reported. We have previously shown evidence for a strong association between prostate cancer (PrCa) risk and rs2242652 at 5p15, intronic in the telomerase reverse transcriptase (TERT) gene that encodes TERT. To comprehensively evaluate the association between genetic variation across this region and PrCa, we performed a fine-mapping analysis by genotyping 134 SNPs using a custom Illumina iSelect array or Sequenom MassArray iPlex, followed by imputation of 1094 SNPs in 22 301 PrCa cases and 22 320 controls in The PRACTICAL consortium. Multiple stepwise logistic regression analysis identified four signals in the promoter or intronic regions of TERT that independently associated with PrCa risk. Gene expression analysis of normal prostate tissue showed evidence that SNPs within one of these regions also associated with TERT expression, providing a potential mechanism for predisposition to disease.
Resumo:
A genome-wide search for markers associated with BSE incidence was performed by using Transmission-Disequilibrium Tests (TDTs). Significant segregation distortion, i.e., unequal transmission probabilities of alleles within a locus, was found for three marker loci on Chromosomes (Chrs) 5, 10, and 20. Although TDTs are robust to false associations owing to hidden population substructures, it cannot distinguish segregation distortion caused by a true association between a marker and bovine spongiform encephalopathy (BSE) from a population-wide distortion. An interaction test and a segregation distortion analysis in half-sib controls were used to disentangle these two alternative hypotheses. None of the markers showed any significant interaction between allele transmission rates and disease status, and only the marker on Chr 10 showed a significant segregation distortion in control individuals. Nevertheless, the control group may have been a mixture of resistant and susceptible but unchallenged individuals. When new genotypes were generated in the vicinity of these three markers, evidence for an association with BSE was confirmed for the locus on Chr 5.
Resumo:
Multiple sclerosis (MS) is a common chronic inflammatory disease of the central nervous system. Susceptibility to the disease is affected by both environmental and genetic factors. Genetic factors include haplotypes in the histocompatibility complex (MHC) and over 50 non-MHC loci reported by genome-wide association studies. Amongst these, we previously reported polymorphisms in chromosome 12q13-14 with a protective effect in individuals of European descent. This locus spans 288 kb and contains 17 genes, including several candidate genes which have potentially significant pathogenic and therapeutic implications. In this study, we aimed to fine-map this locus. We have implemented a two-phase study: a variant discovery phase where we have used next-generation sequencing and two target-enrichment strategies [long-range polymerase chain reaction (PCR) and Nimblegen's solution phase hybridization capture] in pools of 25 samples; and a genotyping phase where we genotyped 712 variants in 3577 healthy controls and 3269 MS patients. This study confirmed the association (rs2069502, P = 9.9 × 10−11, OR = 0.787) and narrowed down the locus of association to an 86.5 kb region. Although the study was unable to pinpoint the key-associated variant, we have identified a 42 (genotyped and imputed) single-nucleotide polymorphism haplotype block likely to harbour the causal variant. No evidence of association at previously reported low-frequency variants in CYP27B1 was observed. As part of the study we compared variant discovery performance using two target-enrichment strategies. We concluded that our pools enriched with Nimblegen's solution phase hybridization capture had better sensitivity to detect true variants than the pools enriched with long-range PCR, whilst specificity was better in the long-range PCR-enriched pools compared with solution phase hybridization capture enriched pools; this result has important implications for the design of future fine-mapping studies.