961 resultados para Water levels.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. Disturbance and anthropogenic land use changes are usually considered to be key factors facilitating biological invasions. However, specific comparisons of invasion success between sites affected to different degrees by these factors are rare.

2. In this study we related the large-scale distribution of the invading New Zealand mud snail (Potamopyrgus antipodarum) in southern Victorian streams, Australia, to anthropogenic land use, flow variability, water quality and distance from the site to the sea along the stream channel.

3. The presence of P. antipodarum was positively related to an index of flow-driven disturbance, the coefficient of variability of mean daily flows for the year prior to the study.

4. Furthermore, we found that the invader was more likely to occur at sites with multiple land uses in the catchment, in the forms of grazing, forestry and anthropogenic developments (e.g. towns and dams), compared with sites with low-impact activities in the catchment. However, this relationship was confounded by a higher likelihood of finding this snail in lowland sites close to the sea.

5. We conclude that P. antipodarum could potentially be found worldwide at sites with similar ecological characteristics. We hypothesise that its success as an invader may be related to an ability to quickly re-colonise denuded areas and that population abundances may respond to increased food resources. Disturbances could facilitate this invader by creating spaces for colonisation (e.g. a possible consequence of floods) or changing resource levels (e.g. increased nutrient levels in streams with intense human land use in their catchments).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many environmental studies require accurate simulation of water and solute fluxes in the unsaturated zone. This paper evaluates one- and multi-dimensional approaches for soil water flow as well as different spreading mechanisms to model solute behavior at different scales. For quantification of soil water fluxes,Richards equation has become the standard. Although current numerical codes show perfect water balances, the calculated soil water fluxes in case of head boundary conditions may depend largely on the method used for spatial averaging of the hydraulic conductivity. Atmospheric boundary conditions, especially in the case of phreatic groundwater levels fluctuating above and below a soil surface, require sophisticated solutions to ensure convergence. Concepts for flow in soils with macro pores and unstable wetting fronts are still in development. One-dimensional flow models are formulated to work with lumped parameters in order to account for the soil heterogeneity and preferential flow. They can be used at temporal and spatial scales that are of interest to water managers and policymakers. Multi-dimensional flow models are hampered by data and computation requirements.Their main strength is detailed analysis of typical multi-dimensional flow problems, including soil heterogeneity and preferential flow. Three physically based solute-transport concepts have been proposed to describe solute spreading during unsaturated flow: The stochastic-convective model (SCM), the convection-dispersion equation (CDE), and the fraction aladvection-dispersion equation (FADE). A less physical concept is the continuous-time random-walk process (CTRW). Of these, the SCM and the CDE are well established, and their strengths and weaknesses are identified. The FADE and the CTRW are more recent,and only a tentative strength weakness opportunity threat (SWOT)analysis can be presented at this time. We discuss the effect of the number of dimensions in a numerical model and the spacing between model nodes on solute spreading and the values of the solute-spreading parameters. In order to meet the increasing complexity of environmental problems, two approaches of model combination are used: Model integration and model coupling. Amain drawback of model integration is the complexity of there sulting code. Model coupling requires a systematic physical domain and model communication analysis. The setup and maintenance of a hydrologic framework for model coupling requires substantial resources, but on the other hand, contributions can be made by many research groups.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The concentrations of 24 elements in the sediment and associated water column were monitored at two sites, one an area of intensive cage culture of carp, the other a wild site far from known cage culture areas, in Lake Kasumigaura, Japan, between September 1994 and September 1995. The concentrations of most elements in Lake Kasumigaura are mostly sub-parts per billion, except those for Ca, Fe, K, Mg, Na, P, and Si. The concentrations of Cd, Co, Cu, Mn, Ni, Pb, V, and Fe in Lake Kasumigaura are higher than the values in Lake Mashu, Lake Shikotsu, and Lake Biwa, and comparable to the levels in open ocean. Statistically significant differences in metal concentrations were observed between the culture and wild sites, with metal concentrations consistently higher at the culture site. Although cage culture of carp in the Lake Kasumigaura system may be causing localized increase in metal concentrations in the sediments, we must treat the results with caution, since the concentrations of metals observed in the sediments in 1995 were lower than those observed in 1979 for all metals at both sampling sites. In conclusion, further study of the concentrations of metals in the lake as a whole must be undertaken before the differences between the culture and wild sites can be proved, or disproved, to be the result of carp culture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many contaminants are currently unregulated by the government and do not have a set limit, known as the Maximum Contaminant Level, which is dictated by cost and the best available treatment technology. The Maximum Contaminant Level Goal, on the other hand, is based solely upon health considerations and is non-enforceable. In addition to being naturally occurring, contaminants may enter drinking water supplies through industrial sources, agricultural practices, urban pollution, sprawl, and water treatment byproducts. Exposure to these contaminants is not limited to ingestion and can also occur through dermal absorption and inhalation in the shower. Health risks for the general public include skin damage, increased risk of cancer, circulatory problems, and multiple toxicities. At low levels, these contaminants generally are not harmful in our drinking water. However, children, pregnant women, and people with compromised immune systems are more vulnerable to the health risks associated with these contaminants. Vulnerable peoples should take additional precautions with drinking water. This research project was conducted in order to learn more about our local drinking water and to characterize our exposure to contaminants. We hope to increase public awareness of water quality issues by educating the local residents about their drinking water in order to promote public health and minimize exposure to some of the contaminants contained within public water supplies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Community Water Fluoridation (CWF) is the adjustment of fluoride concentration in community drinking water to a level that confers optimal protection from dental caries (Truman et al 2002). It is supported by many authorities as the single most effective public health measure for reducing dental caries (DHS 2007). It has consistently been shown to be effective in reducing the prevalence and severity of dental caries in populations following its introduction (NHMRC 1999). The most dramatic reductions (50-60%) were demonstrated in the earlier studies although more recent research has still shown reductions of between 30 and 50% (Truman et al 2002). Despite the strong scientific evidence for its beneficial effects and safety the issue of the appropriateness of CWF is often the focus of public debate. Proponents argue that it reduces dental caries. is safe and cost effective. and that it provides significant benefits to all social classes (Slade et al 1995: Slade et a 1996: Spencer et al 1996). Opponents question its efficacy and safety and argue that its addition to community water supplies is unethical mass medication (Colquhoun 1990: Diesendorf 1986: Diesendorf et al 1997).

More recently, however, there have been important questions raised regarding the continuing benefit of CWF over and above that produced by the widespread use of other sources of fluoride (toothpaste. mouth rinses. varnish and other professionally applied fluorides). Generally, dental caries has declined steeply in the last thirty years and many have observed that dental caries has also reduced in parts of Australia and other countries where there has never been CWF or where it has ceased. It has been suggested that because of the current low population levels of dental caries and the increase in alternate sources of fluoride, CWF no longer offers the benefits it may have in the past. Given this notion, together with the concerns of a minority subgroup of the population regarding the safety of CWF, it is valuable to examine current evidence to answer the question: Is there still a role for CWF in Australia?

This paper will firstly examine the history of water fluoridation and its mechanisms of action. Secondly. trends in dental decay experience over the last three decades with particular emphasis on social and geographical inequities in Australia will be described. We also review the current state of scientific evidence for the benefits of CWF including the contribution it makes to the reduction of oral health inequalities. In light of this we will provide a response to the question posed above.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In desert rodents, the production of concentrated urine is essential for survival in xeric environments in order to conserve water. Reabsorption of water in the kidney is dependent on large osmotic gradients in the renal medulla. This causes the renal cells to be bathed in a hypertonic extracellular fluid that can compromise cellular function. In response to hypertonicity, kidney cells accumulate compatible, non-ionic osmolytes that lower the ionic strength within the cells to isotonic levels by replacing intracellular ionic electrolytes. The tonicity-responsive enhancer binding protein (TonEBP) is a transcription factor that regulates the expression of genes that encode proteins that catalyse the accumulation of compatible osmolytes. We investigated the expression of TonEBP mRNA and protein and compatible osmolyte genes in the Spinifex hopping mouse, Notomys alexis, an Australian desert rodent that produces a highly concentrated urine. TonEBP mRNA expression was unchanged after 3 days of water deprivation but was significantly increased after 7 and 14 days of water deprivation. Immunohistochemistry showed that during water deprivation TonEBP had translocated from the cytoplasm into the nucleus of cells in the renal medulla and papilla. In addition, 3, 7 and 14 days of water deprivation caused a significant increase in aldose reductase (AR), myo-inositol (SMIT), betaine/GABA (BGT-1) and taurine (TauT) transporter mRNA expression, which is indicative of an increase in TonEBP activity. In desert rodents, TonEBP regulation of gene transcription is probably an important mechanism to protect renal cells in the face of the large corticomedullary gradient that is required to concentrate urine and conserve water.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Arsenic (As) induces DNA-damaging reactive oxygen species. Most oxidative DNA damage is countered by base excision repair (BER), the capacity for which may be reduced in older animals. We examined whether age and consumption of As in lactational milk or drinking water influences BER gene transcript levels in mice. Lactating mothers and 24-week-old mice were exposed (24 h or 2 weeks) to As (2 or 50 p.p.m.) in drinking water. Lung tissue was harvested from adults, neonates (initially 1 week old) feeding from lactating mothers and untreated animals 1– 26 weeks old. Transcripts encoding BER proteins were quantified. BER transcript levels decreased precipitously with age in untreated mice but increased in neonates whose mothers were exposed to 50 p.p.m. As for 24 h or 2 weeks. Treatment of 24-week-old mice with 2 or 50 p.p.m. As for 2 weeks decreased all transcript levels measured. Exposure to As attenuated the age-related transcript level decline for only one BER gene. We conclude that aging is associated with a rapid reduction of BER transcript levels in mice, which may contribute to decreased BER activity in older animals. Levels of As that can alter gene expression are transmitted to neonatal mice in lactational milk produced by mothers drinking water containing As, raising concerns about breastfeeding in countries having As-contaminated groundwater. Reduction of BER transcript levels in 24- week-old mice exposed to As for 2 weeks suggests As may potentiate sensitivity to itself in older animals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An electrochemical sensor for the detection of Cu2+ is reported which incorporates poly-l-aspartic acid (PLAsp) with 32–96 aspartate units as a selective ligand for the metal ion. PLAsp is covalently attached to a gold electrode modified with a monolayer of 3-mercaptopropionic acid using carbodiimide coupling via an N-hydroxysuccinimide (NHS) ester intermediate. The acid side groups and deprotonated peptide nitrogens on two aspartate moieties are thought to be primarily responsible for chelation of Cu2+, which remains bound when reduced to Cu+. A consequence of the multiple binding points that are available with a polypeptide is the low detection limit. The lowest concentration detected was 3 nM (0.2 ppb) achieved with Osteryoung square wave voltammetry. This detection limit compares favourably with that of ICP-OES and previously reported cysteine-modified electrodes. Analysis of tap and lake water samples using the PLAsp-modified electrode agreed well with ICP-OES analysis of the same samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water quality modelling is becoming increasingly popular in the water industry due to its applications in drinking water and treated wastewater reuse. Microbial growth and disinfectant decay are the two most important factors to be considered in drinking water if they are to comply with stringent guidelines imposed by relevant water regulatory authorities. In the case of drinking water, an optimum level of disinfectant is an important criterion to have pathogen free water with minimal disinfectant by products (DBPs) below the acceptable levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nutrient discharge into coastal areas, such as the Great Barrier Reef can result in the degradation of coastal ecosystems. For example, excess nitrogen and phosphorus can damage corals through inducing algal bloom and subsequent shading. Excessive phosphorus can further weaken coral skeletons making them susceptible to damage. Land based industries such as aquaculture can contribute to such problems. This study set out to develop a system whereby water from aquaculture can be constantly reused resulting in minimized waste discharge. A three-stage filtration system utilizing floating media and activated carbon was designed to harness bacterial processes that could reduce both particulate and dissolved compounds to the extent whereby approximately 100% reuse of the wastewater became possible. This involved efficient and effective particulate and biological removal mechanisms in both aerobic and anaerobic zones of the filtration system. This design reduced dissolved nitrogen levels by up to 70% and maintained low phosphorus levels, which allowed the reuse of water for the successful culture of barramundi with a survival rate of 97% over 25 days. This pilot scale study demonstrated the potential of reusing aquaculture wastewater from the viewpoint of reducing nutrient input into coastal environments. Future research will refine these processes and assess the performance of the system at several commercial scale applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nearly all drinking water distribution systems experience a "natural" reduction of disinfection residuals. The most frequently used disinfectant is chlorine, which can decay due to reactions with organic and inorganic compounds in the water and by liquid/solids reaction with the biofilm, pipe walls and sediments. Usually levels of 0.2-0.5 mg/L of free chlorine are required at the point of consumption to maintain bacteriological safety. Higher concentrations are not desirable as they present the problems of taste and odour and increase formation of disinfection by-products. It is usually a considerable concern for the operators of drinking water distribution systems to manage chlorine residuals at the "optimum level", considering all these issues. This paper describes how the chlorine profile in a drinking water distribution system can be modelled and optimised on the basis of readily and inexpensively available laboratory data. Methods are presented for deriving the laboratory data, fitting a chlorine decay model of bulk water to the data and applying the model, in conjunction with a simplified hydraulic model, to obtain the chlorine profile in a distribution system at steady flow conditions. Two case studies are used to demonstrate the utility of the technique. Melbourne's Greenvale-Sydenham distribution system is unfiltered and uses chlorination as its only treatment. The chlorine model developed from laboratory data was applied to the whole system and the chlorine profile was shown to be accurately simulated. Biofilm was not found to critically affect chlorine decay. In the other case study, Sydney Water's Nepean system was modelled from limited hydraulic data. Chlorine decay and trihalomethane (THM) formation in raw and treated water were measured in a laboratory, and a chlorine decay and THM model was derived on the basis of these data. Simulated chlorine and THM profiles agree well with the measured values available. Various applications of this modelling approach are also briefly discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nearly all drinking water distribution systems experience a "natural" reduction of disinfection residuals. The most frequently used disinfectant is chlorine, which can decay due to reactions with organic and inorganic compounds in the water and by liquid/solids reaction with the biofilm, pipe walls and sediments. Usually levels of 0.2-0.5 mg/L of free chlorine are required at the point of consumption to maintain bacteriological safety. Higher concentrations are not desirable as they present the problems of taste and odour and increase formation of disinfection by-products. It is usually a considerable concern for the operators of drinking water distribution systems to manage chlorine residuals at the "optimum level", considering all these issues. This paper describes how the chlorine profile in a drinking water distribution system can be modelled and optimised on the basis of readily and inexpensively available laboratory data. Methods are presented for deriving the laboratory data, fitting a chlorine decay model of bulk water to the data and applying the model, in conjunction with a simplified hydraulic model, to obtain the chlorine profile in a distribution system at steady flow conditions. Two case studies are used to demonstrate the utility of the technique. Melbourne's Greenvale-Sydenham distribution system is unfiltered and uses chlorination as its only treatment. The chlorine model developed from laboratory data was applied to the whole system and the chlorine profile was shown to be accurately simulated. Biofilm was not found to critically affect chlorine decay. In the other case study, Sydney Water's Nepean system was modelled from limited hydraulic data. Chlorine decay and trihalomethane (THM) formation in raw and treated water were measured in a laboratory, and a chlorine decay and THM model was derived on the basis of these data. Simulated chlorine and THM profiles agree well with the measured values available. Various applications of this modelling approach are also briefly discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Monodispersed silica shell / zinc oxide core composite nanospheres were prepared in an oil-in-water microemulsion system. By using cyclohexane as the oil phase and Triton X-100 as the surfactant, nanospheres with a high core loading level and high monodispersity were obtained. The silica coating greatly reduced the photoactivity of ZnO nanoparticles, offering safe and durable applications of ZnO as UV screening agents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectively assessing ecological benefits of competing watering strategies is difficult. We present a framework of coupled models to compare scenarios, using the Coorong, the estuary for the MurrayDarling River system in South Australia, as a case study. The framework links outputs from recent modelling of the effects of climate change on water availability across the MurrayDarling Basin to a hydrodynamic model for the Coorong, and then an ecosystem-response model. The approach has significant advantages, including the following: (1) evaluating management actions is straightforward because of relatively tight coupling between impacts on hydrology and ecology; (2) scenarios of 111 years reveal the impacts of realistic climatic and flow variability on Coorong ecology; and (3) ecological impact is represented in the model by a series of ecosystem states, integrating across many organisms, not just iconic species. We applied the approach to four flow scenarios, comparing conditions without development, current water-use levels, and two predicted future climate scenarios. Simulation produced a range of hydrodynamic conditions and consequent distributions of ecosystem states, allowing managers to compare scenarios. This approach could be used with many climates and/or management actions for optimisation of flow delivery to environmental assets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work evaluated several aspects of the generalized stress response [endocrine (cortisol), metabolic (glucose), hematologic (hematocrit and hemoglobin) and cellular (HSP70)] in the Amazonian warm-water fish matrinxã (Brycon amazonicus ) subjected to an acute cold shock. This species farming has been done in South America, and growth and feed conversion rates have been interesting. However, in subtropical areas of Brazil, where the water temperature can rapidly change, high rates of matrinxã mortality have been associated with abrupt decrease in the water temperature. Thus, we subjected matrinxã to a sudden cold shock by transferring the fish directly to tanks in which the water temperature was 10oC below the initial conditions (cold shock from 28ºC to 18oC). After 1h the fish were returned to the original tanks (28ºC). The handling associated with tank transfer was also imposed on control groups (not exposed to cold shock). While exposure to cold shock did not alter the measured physiological conditions within 1h, fish returned to the ambient condition (water at 28º C) significantly increased plasma cortisol and glucose levels. Exposure to cold shock and return to the warm water did not affect HSP70 levels. The increased plasma cortisol and glucose levels after returning the fish to warm water suggest that matrinxã requires cortisol and glucose for adaptation to increased temperature.