893 resultados para Viral oncolysis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate that the cauliflower mosaic virus (CaMV) gene VI product can transactivate the expression of a reporter gene in bakers' yeast, Saccharomyces cerevisiae. The gene VI coding sequence was placed under the control of the galactose-inducible promoter GAL1, which is presented in the yeast shuttle vector pYES2, to create plasmid JS169. We also created a chloramphenicol acetyltransferase (CAT) reporter plasmid, JS161, by inserting the CAT reporter gene in-frame into CaMV gene II and subsequently cloning the entire CaMV genome into the yeast vector pRS314. When JS161 was transformed into yeast and subsequently assayed for CAT activity, only a very low level of CAT activity was detected in cellular extracts. To investigate whether the CaMV gene VI product would mediate an increase in CAT activity, we cotransformed yeast with JS169 and JS161. Upon induction with galactose, we found that CAT activity in yeast transformed with JS161 and JS169 was about 19 times higher than the level in the transformants that contained only JS161. CAT activity was dependent on the presence of the gene VI protein, because essentially no CAT activity was detected in yeast cells grown in the presence of glucose, which represses expression from the GAL1 promoter. RNase protection assays showed that the gene VI product had no effect on transcription from the 35S RNA promoter, demonstrating that regulation was occurring at the translation level. This yeast system will prove useful for understanding how the gene VI product of CaMV mediates the translation of genes present on a eukaryotic polycistronic mRNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leishmaniavirus (LRV) is a double-stranded RNA virus that persistently infects the protozoan parasite Leishmania. LRV produces a short RNA transcript, corresponding to the 5' end of positive-sense viral RNA, both in vivo and in in vitro polymerase assays. The short transcript is generated by a single site-specific cleavage event in the 5' untranslated region of the 5.3-kb genome. This cleavage event can be reproduced in vitro with purified viral particles and a substrate RNA transcript possessing the viral cleavage site. A region of nucleotides required for cleavage was identified by analyzing the cleavage sites yielding the short transcripts of various LRV isolates. A 6-nt deletion at this cleavage site completely abolished RNA processing. In an in vitro cleavage assay, baculovirus-expressed capsid protein possessed an endonuclease activity identical to that of native virions, showing that the viral capsid protein is the RNA endonuclease. Identification of the LRV capsid protein as an RNA endonuclease is unprecedented among known viral capsid proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The promoter of the bean PAL2 gene (encoding phenylalanine ammonia-lyase; EC 4.3.1.5) is a model for studies of tissue-restricted gene expression in plants. Petal epidermis is one of the tissues in which this promoter is activated in tobacco. Previous work suggested that a major factor establishing the pattern of PAL2 expression in tobacco petals is the tissue distribution of a protein closely related to Myb305, which is a Myb-like transcriptional activator from snapdragon. In the present work, we show that Myb305 expression in tobacco leaves causes ectopic activation of the PAL2 promoter. To achieve Myb305 expression in planta, a viral expression vector was used. This approach combines the utility of transient assays with the possibility of direct biochemical detection of the introduced factor and may have wider application for studying the function of plant transcription factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In addition to their well-recognized hepatotropism, all hepatitis B viruses (HBVs) display marked species specificity, growing poorly or not at all in species other than those closely related to their natural hosts. We have examined the molecular basis for this narrow host range, using duck HBV (DHBV) and heron HBV (HHBV) as a model system. HHBV virions will not infect ducks in vivo and infect cultured duck hepatocytes extremely inefficiently in vitro. Mutant HHBV genomes lacking all viral envelope proteins (HHBV env-) can be complemented in trans with DHBV envelope proteins; the resulting pseudotyped virions can efficiently infect duck hepatocytes. Further complementation analysis reveals that of the two viral surface proteins (L and S), it is the L protein that determines host range. Pseudotyping of HHBV env- with DHBV/HHBV chimeric envelope proteins reveals that replacement of as few as 69 amino acids of the pre-S domain of the HHBV L protein by their DHBV counterparts is sufficient to permit infection of duck hepatocytes. These studies indicate that the species-specificity of hepadnaviral infection is determined at the level of virus entry and is governed by the pre-S domain of the viral L protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influenza virus M1 mRNA has two alternative 5' splice sites: a distal 5' splice site producing mRNA3 that has the coding potential for 9 amino acids and a proximal 5' splice site producing M2 mRNA encoding the essential M2 ion-channel protein. Only mRNA3 was made in uninfected cells transfected with DNA expressing M1 mRNA. Similarly, using nuclear extracts from uninfected cells, in vitro splicing of M1 mRNA yielded only mRNA3. Only when the mRNA3 5' splice site was inactivated by mutation was M2 mRNA made in uninfected cells and in uninfected cell extracts. In influenza virus-infected cells, M2 mRNA was made, but only after a delay, suggesting that newly synthesized viral gene product(s) were needed to activate the M2 5' splice site. We present strong evidence that these gene products are the complex of the three polymerase proteins, the same complex that functions in the transcription and replication of the viral genome. Gel shift experiments showed that the viral polymerase complex bound to the 5' end of the viral M1 mRNA in a sequence-specific and cap-dependent manner. During in vitro splicing catalyzed by uninfected cell extracts, the binding of the viral polymerase complex blocked the mRNA3 5' splice site, resulting in the switch to the M2 mRNA 5' splice site and the production of M2 mRNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability of DNA polymerases (pols) to catalyze the template-directed synthesis of duplex oligonucleotides containing a nonstandard Watson-Crick base pair between a nucleotide bearing a 5-(2,4-diaminopyrimidine) heterocycle (d kappa) and a nucleotide bearing either deoxyxanthosine (dX) or N1-methyloxoformycin B (pi) has been investigated. The kappa-X and kappa-pi base pairs are jointed by a hydrogen bonding pattern different from and exclusive of those joining the AT and GC base pairs. Reverse transcriptase from human immunodeficiency virus type 1 (HIV-1) incorporates dXTP into an oligonucleotide opposite d kappa in a template with good fidelity. With lower efficiency and fidelity, HIV-1 reverse transcriptase also incorporates d kappa TP opposite dX in the template. With d pi in the template, no incorporation of d kappa TP was observed with HIV reverse transcriptase. The Klenow fragment of DNA pol I from Escherichia coli does not incorporate d kappa TP opposite dX in a template but does incorporate dXTP opposite d kappa. Bovine DNA pols alpha, beta, and epsilon accept neither dXTP opposite d kappa nor d kappa TP opposite d pi. DNA pols alpha and epsilon (but not beta) incorporate d kappa TP opposite dX in a template but discontinue elongation after incorporating a single additional base. These results are discussed in light of the crystal structure for pol beta and general considerations of how polymerases must interact with an incoming base pair to faithfully copy genetic information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although several immunologic and virologic markers measured in peripheral blood are useful for predicting accelerated progression of human immunodeficiency virus (HIV) disease, their validity for evaluating the response to antiretroviral therapy and their ability to accurately reflect changes in lymphoid organs remain unclear. In the present study, changes in certain virologic markers have been analyzed in peripheral blood and lymphoid tissue during antiretroviral therapy. Sixteen HIV-infected individuals who were receiving antiretroviral therapy with zidovudine for > or = 6 months were randomly assigned either to continue on zidovudine alone or to add didanosine for 8 weeks. Lymph node biopsies were performed at baseline and after 8 weeks. Viral burden (i.e., HIV DNA copies per 10(6) mononuclear cells) and virus replication in mononuclear cells isolated from peripheral blood and lymph node and plasma viremia were determined by semiquantitative polymerase chain reaction assays. Virologic and immunologic markers remained unchanged in peripheral blood and lymph node of patients who continued on zidovudine alone. In contrast, a decrease in virus replication in lymph nodes was observed in four of six patients who added didanosine to their regimen, and this was associated with a decrease in plasma viremia. These results indicate that decreases in plasma viremia detected during antiretroviral therapy reflect downregulation of virus replication in lymphoid tissue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intramuscular injection of plasmid DNA expression vectors encoding the three envelope proteins of the hepatitis B virus (HBV) induced humoral responses in C57BL/6 mice specific to several antigenic determinants of the viral envelope. The first antibodies appeared within 1-2 weeks after injection of DNA and included antibodies of the IgM isotype. Over the next few weeks, an IgM to IgG class switch occurred, indicating helper T-lymphocyte activity. Peak IgG titers were reached by 4-8 weeks after a single DNA injection and were maintained for at least 6 months without further DNA injections. The antibodies to the envelope proteins reacted with group- and subtype-specific antigenic determinants of the HBV surface antigen (HBsAg). Expression vectors encoding the major (S) and middle (preS2 plus S) envelope proteins induced antibodies specific to the S protein and preS2 domain, and preS2 antibodies were prominent at early time points. In general, the expression vectors induced humoral responses in mice that mimic those observed in humans during the course of natural HBV infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Because of the short half-life of NO, previous studies implicating NO in central nervous system pathology during infection had to rely on the demonstration of elevated levels of NO synthase mRNA or enzyme expression or NO metabolites such as nitrate and nitrite in the infected brain. To more definitively investigate the potential causative role of NO in lesions of the central nervous system in animals infected with neurotropic viruses or suffering from experimental allergic encephalitis, we have determined directly the levels of NO present in the central nervous system of such animals. Using spin trapping of NO and electron paramagnetic resonance spectroscopy, we confirm here that copious amounts of NO (up to 30-fold more than control) are elaborated in the brains of rats infected with rabies virus or borna disease virus, as well as in the spinal cords of rats that had received myelin basic protein-specific T cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Rep protein of geminiviruses is the sole viral protein required for their DNA replication. The amino acid sequence of Rep protein contains an NTP binding consensus motif (P-loop). Here we show that purified Rep protein of tomato yellow leaf curl virus expressed in Escherichia coli exhibits an ATPase activity in vitro. Amino acid exchanges in the P-loop sequence of Rep causes a substantial decrease or loss of the ATPase activity. In vivo, mutant viruses carrying these Rep mutations do not replicate in plant cells. These results show that ATP binding by the Rep protein of geminiviruses is required for its function in viral DNA replication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this report we show that yeast expressing brome mosaic virus (BMV) replication proteins 1a and 2a and replicating a BMV RNA3 derivative can be extracted to yield a template-dependent BMV RNA-dependent RNA polymerase (RdRp) able to synthesize (-)-strand RNA from BMV (+)-strand RNA templates added in vitro. This virus-specific yeast-derived RdRp mirrored the template selectivity and other characteristics of RdRp from BMV-infected plants. Equivalent extracts from yeast expressing 1a and 2a but lacking RNA3 contained normal amounts of 1a and 2a but had no RdRp activity on BMV RNAs added in vitro. To determine which RNA3 sequences were required in vivo to yield RdRp activity, we tested deletions throughout RNA3, including the 5',3', and intercistronic noncoding regions, which contain the cis-acting elements required for RNA3 replication in vivo. RdRp activity was obtained only from cells expressing 1a, 2a, and RNA3 derivatives retaining both 3' and intercistronic noncoding sequences. Strong correlation between extracted RdRp activity and BMV (-)-strand RNA accumulation in vivo was found for all RNA3 derivatives tested. Thus, extractable in vitro RdRp activity paralleled formation of a complex capable of viral RNA synthesis in vivo. The results suggest that assembly of active RdRp requires not only viral proteins but also viral RNA, either to directly contribute some nontemplate function or to recruit essential host factors into the RdRp complex and that sequences at both the 3'-terminal initiation site and distant internal sites of RNA3 templates may participate in RdRp assembly and initiation of (-)-strand synthesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several models have been proposed for the infectious agents that cause human Creutzfeldt-Jakob disease (CJD) and sheep scrapie. Purified proteins and extracted nucleic acids are not infectious. To further identify the critical molecular components of the CJD agent, 120S infectious material with reduced prion protein (PrP) was treated with guanidine hydrochloride or SDS. Particulate and soluble components were then separated by centrifugation and molecularly characterized. Conditions that optimally solubilized residual PrP and/or nucleic acid-protein complexes were used to produce subfractions that were assayed for infectivity. All controls retained > 90% of the 120S titer (approximately 15% of that in total brain) but lost > 99.5% of their infectivity after heat-SDS treatment (unlike scrapie fractions enriched for PrP). Exposure to 1% SDS at 22 degrees C produced particulate nucleic acid-protein complexes that were almost devoid of host PrP. These sedimenting complexes were as infectious as the controls. In contrast, when such complexes were solubilized with 2.5 M guanidine hydrochloride, the infectious titer was reduced by > 99.5%. Sedimenting PrP aggregates with little nucleic acid and no detectable nucleic acid-binding proteins had negligible infectivity, as did soluble but multimeric forms of PrP. These data strongly implicate a classical viral structure, possibly with no intrinsic PrP, as the CJD infectious agent. CJD-specific protective nucleic acid-binding protein(s) have already been identified in 120S preparations, and preliminary subtraction studies have revealed several CJD-specific nucleic acids. Such viral candidates deserve more attention, as they may be of use in preventing iatrogenic CJD and in solving a fundamental mystery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Replication of the single-stranded DNA genome of geminiviruses occurs via a double-stranded intermediate that is subsequently used as a template for rolling-circle replication of the viral strand. Only one of the proteins encoded by the virus, here referred to as replication initiator protein (Rep protein), is indispensable for replication. We show that the Rep protein of tomato yellow leaf curl virus initiates viral-strand DNA synthesis by introducing a nick in the plus strand within the nonanucleotide 1TAATATT decreases 8AC, identical among all geminiviruses. After cleavage, the Rep protein remains bound to the 5' end of the cleaved strand. In addition, we show that the Rep protein has a joining activity, suggesting that it acts as a terminase, thus resolving the nascent viral single strand into genome-sized units.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Listeria monocytogenes (LM) is a Gram-positive bacterium that is able to enter host cells, escape from the endocytic vesicle, multiply within the cytoplasm, and spread directly from cell to cell without encountering the extracellular milieu. The ability of LM to gain access to the host cell cytosol allows proteins secreted by the bacterium to efficiently enter the pathway for major histocompatibility complex class I antigen processing and presentation. We have established a genetic system for expression and secretion of foreign antigens by recombinant strains, based on stable site-specific integration of expression cassettes into the LM genome. The ability of LM recombinants to induce protective immunity against a heterologous pathogen was demonstrated with lymphocytic choriomeningitis virus (LCMV). LM strains expressing the entire LCMV nucleoprotein or an H-2Ld-restricted nucleoprotein epitope (aa 118-126) were constructed. Immunization of mice with LM vaccine strains conferred protection against challenge with virulent strains of LCMV that otherwise establish chronic infection in naive adult mice. In vivo depletion of CD8+ T cells from vaccinated mice abrogated their ability to clear viral infection, showing that protective anti-viral immunity was due to CD8+ T cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Envelope glycoproteins of varicella zoster virus (VZV) contain mannose 6-phosphate (Man6P) residues. We now report that Man6P competitively and selectively inhibits infection of cells in vitro by cell-free VZV; furthermore, dephosphorylation of VZV by exposure to alkaline phosphatase rapidly destroys infectivity. Cells are also protected from VZV in a concentration-dependent manner by heparin (ED50 = 0.23 micrograms/ml; 95% confidence limits = 0.16-0.26 microgram/ml) but not by chondroitin sulfate. Both heparin and Man6P are protective only when present about the time of inoculation. Heparin but not Man6P interferes with the attachment of VZV to cell surfaces; moreover, VZV binds to heparin-affinity columns. These data are compatible with a working hypothesis, whereby VZV attaches to cell surfaces by binding to a heparin sulfate proteoglycan. This binding stabilizes VZV, making possible a low-affinity interaction with another Man6P-dependent receptor, which is necessary for viral entry.