919 resultados para Vehicle
Resumo:
Run Off Road (ROR) crashes are road accidents that often result in severe injuries or fatalities. To reduce the severity of ROR crashes, “forgiving roadsides” need to be designed and this includes identifying situations where there is a need for a Vehicle Restraint System (VRS) and what appropriate VRS should be selected for a specific location and traffic condition. Whilst there are standards covering testing, evaluation and classification of VRS within Europe (EN1317 parts 1 to 8), their selection, location and installation requirements are typically based upon national guidelines and standards, often produced by National Road Authorities (NRA) and/or overseeing organisations. Due to local conditions, these national guidelines vary across Europe.
The European SAVeRS project funded by CEDR has developed a practical and readily understandable VRS guidance document and a user-friendly software tool which allow designers and road administrations to select the most appropriate solution in different road and traffic conditions.
This paper describes the main outcomes of the project, the process to select the most appropriate roadside barrier, and the user friendly SAVeRS tool.
Resumo:
Nos últimos anos, o número de vítimas de acidentes de tráfego por milhões de habitantes em Portugal tem sido mais elevado do que a média da União Europeia. Ao nível nacional torna-se premente uma melhor compreensão dos dados de acidentes e sobre o efeito do veículo na gravidade do mesmo. O objetivo principal desta investigação consistiu no desenvolvimento de modelos de previsão da gravidade do acidente, para o caso de um único veículo envolvido e para caso de uma colisão, envolvendo dois veículos. Além disso, esta investigação compreendeu o desenvolvimento de uma análise integrada para avaliar o desempenho do veículo em termos de segurança, eficiência energética e emissões de poluentes. Os dados de acidentes foram recolhidos junto da Guarda Nacional Republicana Portuguesa, na área metropolitana do Porto para o período de 2006-2010. Um total de 1,374 acidentes foram recolhidos, 500 acidentes envolvendo um único veículo e 874 colisões. Para a análise da segurança, foram utilizados modelos de regressão logística. Para os acidentes envolvendo um único veículo, o efeito das características do veículo no risco de feridos graves e/ou mortos (variável resposta definida como binária) foi explorado. Para as colisões envolvendo dois veículos foram criadas duas variáveis binárias adicionais: uma para prever a probabilidade de feridos graves e/ou mortos num dos veículos (designado como veículo V1) e outra para prever a probabilidade de feridos graves e/ou mortos no outro veículo envolvido (designado como veículo V2). Para ultrapassar o desafio e limitações relativas ao tamanho da amostra e desigualdade entre os casos analisados (apenas 5.1% de acidentes graves), foi desenvolvida uma metodologia com base numa estratégia de reamostragem e foram utilizadas 10 amostras geradas de forma aleatória e estratificada para a validação dos modelos. Durante a fase de modelação, foi analisado o efeito das características do veículo, como o peso, a cilindrada, a distância entre eixos e a idade do veículo. Para a análise do consumo de combustível e das emissões, foi aplicada a metodologia CORINAIR. Posteriormente, os dados das emissões foram modelados de forma a serem ajustados a regressões lineares. Finalmente, foi desenvolvido um indicador de análise integrada (denominado “SEG”) que proporciona um método de classificação para avaliar o desempenho do veículo ao nível da segurança rodoviária, consumos e emissões de poluentes.Face aos resultados obtidos, para os acidentes envolvendo um único veículo, o modelo de previsão do risco de gravidade identificou a idade e a cilindrada do veículo como estatisticamente significativas para a previsão de ocorrência de feridos graves e/ou mortos, ao nível de significância de 5%. A exatidão do modelo foi de 58.0% (desvio padrão (D.P.) 3.1). Para as colisões envolvendo dois veículos, ao prever a probabilidade de feridos graves e/ou mortos no veículo V1, a cilindrada do veículo oposto (veículo V2) aumentou o risco para os ocupantes do veículo V1, ao nível de significância de 10%. O modelo para prever o risco de gravidade no veículo V1 revelou um bom desempenho, com uma exatidão de 61.2% (D.P. 2.4). Ao prever a probabilidade de feridos graves e/ou mortos no veículo V2, a cilindrada do veículo V1 aumentou o risco para os ocupantes do veículo V2, ao nível de significância de 5%. O modelo para prever o risco de gravidade no veículo V2 também revelou um desempenho satisfatório, com uma exatidão de 40.5% (D.P. 2.1). Os resultados do indicador integrado SEG revelaram que os veículos mais recentes apresentam uma melhor classificação para os três domínios: segurança, consumo e emissões. Esta investigação demonstra que não existe conflito entre a componente da segurança, a eficiência energética e emissões relativamente ao desempenho dos veículos.
Resumo:
The LAC was requested to review state motor vehicle resources and make recommendations. It focused on three statewide objectives posed by the committees: (1) Determine if any wasteful duplication exists among state-owned vehicle maintenance facilities. (2) Identify any waste or inefficiency in the use of state owned vehicles. (3) Identify unnecessary or personal use of state-owned vehicles.
Resumo:
Several approaches can be used to analyse performance, energy consumption and CO2 emissions in freight transport. In this paper we define and apply a vehicle-oriented, bottom up survey approach, the so called ‘vehicle approach’, in contrast to a ‘supply chain approach’. The main objective of the approach is to assess the impacts of various freight transport operations on efficiency and energy use. We apply the approach, comparing official statistics on freight transport and energy efficiency in Britain and France. Results on freight intensity, vehicle utilisation, fuel use, fuel efficiency and CO2 intensity are compared for the two countries. The results indicate comparable levels of operational and fuel efficiency in road freight transport operations in the two countries. Issues that can be addressed with the vehicle approach include: the impacts of technology innovations and logistics decisions implemented in freight companies, and the quantification of the effect of policy measures on fuel use at the national level.
Resumo:
Report produced as part of the Green Logistics project (EPSRC and Department for Transport funded). Light goods vehicles play a key role in providing goods and services to businesses and other organisations in Britain. In order to better understand the relationship between costs and benefits of LGV operations it is necessary to gain a more detailed appreciation of the roles that these vehicles are fulfilling. This report aims to provide a better understanding of this sector by examining LGV fleet and operations in terms of their characteristics, utilisation and efficiency and purpose. Important potential external impacts of LGVs are also considered.
Resumo:
Report produced as part of the Green Logistics project (EPSRC and Department for Transport funded). To what extent do the taxes paid by the light goods vehicles (LGVs) users in Britain cover their allocated infrastructural, environmental and congestion costs? This report is a continuation of a study on the internalisation of the external costs of heavy goods vehicle activity. Research undertaken jointly by the Transport Studies Group at University of Westminster and Logistics Research Centre at Heriot-Watt University has attempted to answer this question using official government transport statistics and monetary valuations for the external costs.
Resumo:
Report produced as part of the Green Logistics project (EPSRC and Department for Transport funded). This report provides estimates of the total external costs of LGV and HGV operations in London. In 2006, total LGV and HGV activity imposed external costs of approximately £1.75-£1.8 billion using low, medium and high emission cost values. About 27 per cent of these costs were internalised by duties and taxes paid by LGV operators, compared with 26% in the case of HGVs. If congestion costs are excluded, taxes and duties paid by LGV operators are estimated to be 155% of LGVs' allocated infrastructural and environmental costs, compared with 85% in the case of HGVs. When using the medium emission cost values, LGVs accounted for 56% of these external costs in London and HGVs for 44%.
Resumo:
To what extent do the taxes paid by the light goods vehicles (LGVs) users in Britain cover their allocated infrastructural, environmental and congestion costs? This report is a continuation of a study on the internalisation of the external costs of heavy goods vehicle activity. Research undertaken jointly by the Transport Studies Group at University of Westminster and Logistics Research Centre at Heriot-Watt University has attempted to answer this question using official government transport statistics and monetary valuations for the external costs.
Resumo:
Low noise surfaces have been increasingly considered as a viable and cost-effective alternative to acoustical barriers. However, road planners and administrators frequently lack information on the correlation between the type of road surface and the resulting noise emission profile. To address this problem, a method to identify and classify different types of road pavements was developed, whereby near field road noise is analyzed using statistical learning methods. The vehicle rolling sound signal near the tires and close to the road surface was acquired by two microphones in a special arrangement which implements the Close-Proximity method. A set of features, characterizing the properties of the road pavement, was extracted from the corresponding sound profiles. A feature selection method was used to automatically select those that are most relevant in predicting the type of pavement, while reducing the computational cost. A set of different types of road pavement segments were tested and the performance of the classifier was evaluated. Results of pavement classification performed during a road journey are presented on a map, together with geographical data. This procedure leads to a considerable improvement in the quality of road pavement noise data, thereby increasing the accuracy of road traffic noise prediction models.