961 resultados para Vegetation Classification
Resumo:
Map produced by Iowa Department of Transportation of System Classification.
Resumo:
The aim of the Permanent.Plot.ch project is the conservation of historical data about permanent plots in Switzerland and the monitoring of vegetation in a context of environmental changes (mainly climate and land use). Permanent plots are currently being recognized as valuable tools to monitor long-term effects of environmental changes on vegetation. Often used in short studies (3 to 5 years), they are generally abandoned at the end of projects. However, their full potential might only be revealed after 10 or more years, once the location is lost. For instance, some of the oldest permanent plots in Switzerland (first half of the 20th century) were nearly lost, although they are now very valuable data. The Permanent.Plot.ch national database (GIVD ID EU-CH-001), by storing historical and recent data, will allow to ensuring future access to data from permanent vegetation plots. As the database contains some private data, it is not directly available on internet but an overview of the data can be downloaded from internet (http://www.unil.ch/ppch) and precise data are available on request.
Resumo:
When dealing with multi-angular image sequences, problems of reflectance changes due either to illumination and acquisition geometry, or to interactions with the atmosphere, naturally arise. These phenomena interplay with the scene and lead to a modification of the measured radiance: for example, according to the angle of acquisition, tall objects may be seen from top or from the side and different light scatterings may affect the surfaces. This results in shifts in the acquired radiance, that make the problem of multi-angular classification harder and might lead to catastrophic results, since surfaces with the same reflectance return significantly different signals. In this paper, rather than performing atmospheric or bi-directional reflection distribution function (BRDF) correction, a non-linear manifold learning approach is used to align data structures. This method maximizes the similarity between the different acquisitions by deforming their manifold, thus enhancing the transferability of classification models among the images of the sequence.
Resumo:
For several years, the lack of consensus on definition, nomenclature, natural history, and biology of serrated polyps (SPs) of the colon has created considerable confusion among pathologists. According to the latest WHO classification, the family of SPs comprises hyperplastic polyps (HPs), sessile serrated adenomas/polyps (SSA/Ps), and traditional serrated adenomas (TSAs). The term SSA/P with dysplasia has replaced the category of mixed hyperplastic/adenomatous polyps (MPs). The present study aimed to evaluate the reproducibility of the diagnosis of SPs based on currently available diagnostic criteria and interactive consensus development. In an initial round, H&E slides of 70 cases of SPs were circulated among participating pathologists across Europe. This round was followed by a consensus discussion on diagnostic criteria. A second round was performed on the same 70 cases using the revised criteria and definitions according to the recent WHO classification. Data were evaluated for inter-observer agreement using Kappa statistics. In the initial round, for the total of 70 cases, a fair overall kappa value of 0.318 was reached, while in the second round overall kappa value improved to moderate (kappa = 0.557; p < 0.001). Overall kappa values for each diagnostic category also significantly improved in the final round, reaching 0.977 for HP, 0.912 for SSA/P, and 0.845 for TSA (p < 0.001). The diagnostic reproducibility of SPs improves when strictly defined, standardized diagnostic criteria adopted by consensus are applied.
Resumo:
Tiivistelmä: Kasvillisuuden sukkessio ja monimuotoisuus Teuravuoman koeojitusalueella Pohjois-Suomessa
Resumo:
The pace of on-going climate change calls for reliable plant biodiversity scenarios. Traditional dynamic vegetation models use plant functional types that are summarized to such an extent that they become meaningless for biodiversity scenarios. Hybrid dynamic vegetation models of intermediate complexity (hybrid-DVMs) have recently been developed to address this issue. These models, at the crossroads between phenomenological and process-based models, are able to involve an intermediate number of well-chosen plant functional groups (PFGs). The challenge is to build meaningful PFGs that are representative of plant biodiversity, and consistent with the parameters and processes of hybrid-DVMs. Here, we propose and test a framework based on few selected traits to define a limited number of PFGs, which are both representative of the diversity (functional and taxonomic) of the flora in the Ecrins National Park, and adapted to hybrid-DVMs. This new classification scheme, together with recent advances in vegetation modeling, constitutes a step forward for mechanistic biodiversity modeling.
Resumo:
The paper presents a novel method for monitoring network optimisation, based on a recent machine learning technique known as support vector machine. It is problem-oriented in the sense that it directly answers the question of whether the advised spatial location is important for the classification model. The method can be used to increase the accuracy of classification models by taking a small number of additional measurements. Traditionally, network optimisation is performed by means of the analysis of the kriging variances. The comparison of the method with the traditional approach is presented on a real case study with climate data.
Resumo:
We examined the effects of riparian vegetation removal on algal dynamics and stream nutrient retention efficiency by comparing NH4-N and PO4-P uptake lengths from a logged and an unlogged reach in Riera Major, a forested Mediterranean stream in northeastern Spain. From June to September 1995, we executed 6 short-term additions of N (as NH4Cl) and P (as Na2HPO4) in a 200-m section to measure nutrient uptake lengths. The study site included 2 clearly differentiated reaches in terms of canopy cover by riparian trees: the first 100 m were completely logged (i.e., the logged reach) and the remaining 100 m were left intact (i.e., the shaded reach). Trees were removed from the banks of the logged reach in the winter previous to our sampling. In the shaded reach, riparian vegetation was dominated by alders (Alnus glutinosa). The study was conducted during summer and fall months when differences in light availability between the 2 reaches were greatest because of forest canopy conditions. Algal biomass and % of stream surface covered by algae were higher in the logged than in the shaded reach, indicating that logging had a stimulatory effect on algae in the stream. Overall, nutrient retention efficiency was higher (i.e., shorter uptake lengths) in the logged than in the shaded reach, especially for PO4-P. Despite a greater increase in PO4-P retention efficiency relative to that of NH4-N following logging, retention efficiency for NH4-N was higher than for PO4-P in both study reaches. The PO4-P mass-transfer coefficient was correlated with primary production in both study reaches, indicating that algal activity plays an important role in controlling PO4-P dynamics in this stream. In contrast, the NH4-N mass-transfer coefficient showed a positive relation-ship only with % of algal coverage in the logged reach, and was not correlated with any algal-related parameter in the shaded reach. The lack of correlation with algal production suggests that mechanisms other than algal activity (i.e., microbial heterotrophic processes or abiotic mechanisms) may also influence NH4-N retention in this stream. Overall, this study shows that logging disturbances in small shaded streams may alter in-stream ecological features that lead to changes in stream nutrient retention efficiency. Moreover, it emphasizes that alteration of the tight linkage between the stream channel and the adjacent riparian zone may directly and indirectly impact biogeochemical processes with implications for stream ecosystem functioning.
Resumo:
This document Classifications and Pay Plans is produced by the State of Iowa Executive Branch, Department of Administrative Services. Informational document about the pay plan codes and classification codes, how to use them.
Resumo:
An exhaustive classification of matrix effects occurring when a sample preparation is performed prior to liquid-chromatography coupled to mass spectrometry (LC-MS) analyses was proposed. A total of eight different situations were identified allowing the recognition of the matrix effect typology via the calculation of four recovery values. A set of 198 compounds was used to evaluate matrix effects after solid phase extraction (SPE) from plasma or urine samples prior to LC-ESI-MS analysis. Matrix effect identification was achieved for all compounds and classified through an organization chart. Only 17% of the tested compounds did not present significant matrix effects.
Resumo:
Question: When multiple observers record the same spatial units of alpine vegetation, how much variation is there in the records and what are the consequences of this variation for monitoring schemes to detect change? Location: One test summit in Switzerland (Alps) and one test summit in Scotland (Cairngorm Mountains). Method: Eight observers used the GLORIA protocols for species composition and visual cover estimates in percent on large summit sections (>100 m2) and species composition and frequency in nested quadrats (1 m2). Results: The multiple records from the same spatial unit for species composition and species cover showed considerable variation in the two countries. Estimates of pseudoturnover of composition and coefficients of variation of cover estimates for vascular plant species in 1m x 1m quadrats showed less variation than in previously published reports whereas our results in larger sections were broadly in line with previous reports. In Scotland, estimates for bryophytes and lichens were more variable than for vascular plants. Conclusions: Statistical power calculations indicated that, unless large numbers of plots were used, changes in cover or frequency were only likely to be detected for abundant species (exceeding 10% cover) or if relative changes were large (50% or more). Lower variation could be reached with the point methods and with larger numbers of small plots. However, as summits often strongly differ from each other, supplementary summits cannot be considered as a way of increasing statistical power without introducing a supplementary component of variance into the analysis and hence the power calculations.