588 resultados para Urostigma Sect. Malvanthera
Resumo:
The frequency of large-scale heavy precipitation events in the European Alps is expected to undergo substantial changes with current climate change. Hence, knowledge about the past natural variability of floods caused by heavy precipitation constitutes important input for climate projections. We present a comprehensive Holocene (10,000 years) reconstruction of the flood frequency in the Central European Alps combining 15 lacustrine sediment records. These records provide an extensive catalog of flood deposits, which were generated by flood-induced underflows delivering terrestrial material to the lake floors. The multi-archive approach allows suppressing local weather patterns, such as thunderstorms, from the obtained climate signal. We reconstructed mainly late spring to fall events since ice cover and precipitation in form of snow in winter at high-altitude study sites do inhibit the generation of flood layers. We found that flood frequency was higher during cool periods, coinciding with lows in solar activity. In addition, flood occurrence shows periodicities that are also observed in reconstructions of solar activity from 14C and 10Be records (2500-3000, 900-1200, as well as of about 710, 500, 350, 208 (Suess cycle), 150, 104 and 87 (Gleissberg cycle) years). As atmospheric mechanism, we propose an expansion/shrinking of the Hadley cell with increasing/decreasing air temperature, causing dry/wet conditions in Central Europe during phases of high/low solar activity. Furthermore, differences between the flood patterns from the Northern Alps and the Southern Alps indicate changes in North Atlantic circulation. Enhanced flood occurrence in the South compared to the North suggests a pronounced southward position of the Westerlies and/or blocking over the northern North Atlantic, hence resembling a negative NAO state (most distinct from 4.2 to 2.4 kyr BP and during the Little Ice Age). South-Alpine flood activity therefore provides a qualitative record of variations in a paleo-NAO pattern during the Holocene. Additionally, increased South Alpine flood activity contrasts to low precipitation in tropical Central America (Cariaco Basin) on the Holocene and centennial time scale. This observation is consistent with a Holocene southward migration of the Atlantic circulation system, and hence of the ITCZ, driven by decreasing summer insolation in the Northern hemisphere, as well as with shorter-term fluctuations probably driven by solar activity.
Resumo:
Pollen records from perennially frozen sequences provide vegetation and climate reconstruction for the last 48,000 14C years in the central part of Taymyr Peninsula. Open larch forest with Alnus fruticosa and Betula nana grew during the Kargin (Middle Weichselian) Interstade, ca. 48,000-25,000 14C yr B.P. The climate was generally warmer and wetter than today. Open steppe-like communities with Artemisia, Poaceae, Asteraceae, and herb tundralike communities with dwarf Betula and Salix dominated during the Sartan (Late Weichselian) Stade, ca. 24,000-10,300 14C yr B.P. The statistical information method used for climate reconstruction shows that the coldest climate was ca. 20,000-17,000 14C yr B.P. A warming (Allerød Interstade?) with mean July temperature ca. 1.5°C warmer than today occurred ca. 12,000 14C yr B.P. The following cooling with temperatures about 3°-4°C cooler than present and precipitation about 100 mm lower corresponds well with the Younger Dryas Stade. Tundra-steppe vegetation changed to Betula nana-Alnus fruticosa shrub tundra ca. 10,000 14C yr B.P. Larch appeared in the area ca. 9400 14C yr B.P. and disappeared after 2900 14C yr B.P. Cooling events ca. 10,500, 9600, and 8200 14C yr B.P. characterized the first half of the Holocene. A significant warming occurred ca. 8500 14C yr B.P., but the Holocene temperature maximum was at about 6000-4500 14C yr B.P. The vegetation cover approximated modern conditions ca. 2800 14C yr B.P. Late Holocene warming events occurred at ca. 3500, 2000, and 1000 14C yr B.P. A cooling (Little Ice Age?) took place between 500 and 200 14C yr ago.