959 resultados para Ultrasonic non-destructive testing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laminated sediment records from the oxygen minimum zone in the Arabian Sea offer unique ultrahigh-resolution archives for deciphering climate variability in the Arabian Sea region. Although numerous analytical techniques are available it has become increasingly popular during the past decade to analyze relative variations of sediment cores' chemical signature by non-destructive X-ray fluorescence (XRF) core scanning. We carefully selected an approximately 5 m long sediment core from the northern Arabian Sea (GeoB12309-5: 24°52.3' N; 62°59.9' E, 956 m water depth) for a detailed, comparative study of high-resolution techniques, namely non-destructive XRF core scanning (0.8 mm resolution) and ICP-MS/OES analysis on carefully selected, discrete samples (1 mm resolution). The aim of our study was to more precisely define suitable chemical elements that can be accurately analyzed and to determine which elemental ratios can be interpretated down to sub-millimeter-scale resolutions. Applying the Student's t-test our results show significantly correlating (1% significance level) elemental patterns for all S, Ca, Fe, Zr, Rb, and Sr, as well as the K/Ca, Fe/Ti and Ti/Al ratios that are all related to distinct lithological changes. After careful consideration of all errors for the ICP analysis we further provide respective factors of XRF Core Scanner software error's underestimation by applying Chi-square-tests, which is especially relevant for elements with high count rates. As demonstrated by these new, ultra-high resolution data core scanning has major advantages (high-speed, low costs, few sample preparation steps) and represents an increasingly required alternative over the time consuming, expensive, elaborative, and destructive wet chemical analyses (e.g., by ICP-MS/OES after acid digestions), and meanwhile also provides high-quality data in unprecedented resolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pelagic sediments recording an extreme and short-lived global warming event, the Late Paleocene Thermal Maximum (LPTM), were recovered from Hole 999B (Colombian Basin) and Holes 1001A and 1001B (lower Nicaraguan Rise) in the Caribbean Sea during Ocean Drilling Program Leg 165. The LPTM consists of a 0.3-0.97 m calcareous claystone to claystone horizon. High-resolution downhole logging (Formation MicroScanner [FMS]), standard downhole logs (resistivity, velocity, density, natural gamma ray, and geochemical log), and non-destructive chemical and physical property (multisensor core logger [MSCL] and X-ray fluorescence [XRF] core scanner) data were used to identify composite sections from parallel holes and to record sedimentological and environmental changes associated with the LPTM. Downhole logging data indicate an abrupt and distinct difference in physical and chemical properties that extend for tens of meters above and below the LPTM. These observations indicate a rapid environmental change at the LPTM, which persists beyond the LPTM anomaly. Comparisons of gamma-ray attenuation porosity evaluator (GRAPE) densities from MSCL logging on split cores with FMS resistivity values allows core-to-log correlation with a high degree of accuracy. High-resolution magnetic susceptibility measurements of the cores are compared with elemental concentrations (e.g., Fe, Ca) analyzed by high-resolution XRF scanning. The high-resolution data obtained from several detailed core and downhole logging methods are the key to the construction of composite sections, the correlation of both adjacent holes and distant sites, and core-log integration. These continuous-depth series reveal the LPTM as a multiphase event with a nearly instantaneous onset, followed by a much different set of physical and chemical conditions of short duration, succeeded by a longer transition to a new, more permanent set of environmental circumstances. The estimated duration of these 'phases' are consistent with paleontological and isotopic studies of the LPTM

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fossil floras described by Dieter MAI and Harald WALTHER are invaluable for understanding the past plant diversity in Europe, and provide important information on the occurrence of taxa in the fossil record that is critical for evolutionary studies. Among the taxa they recognized were seeds assigned to the extant genus Alpinia ROXB. (Zingiberaceae, Zingiberales). We reinvestigated 28 specimens that were assigned to Alpinia arnensis (CHANDLER) MAI, Alpinia cf. arnensis, and Alpinia bivascularis MAI from the Ypresian (lower Eocene) of the UK, upper Eocene of Germany, and lower Miocene of Germany using non-destructive synchrotron-based X-ray tomography to reveal internal anatomy. None of the samples studied show an anatomy consistent with extant Alpinia or even Zingiberales. The fossils lack the globose shape, often striate external surface, seed coat structure, operculum, and micropylar collar seen in all Alpinia, and lack the chalazal chamber seen in many Alpinia species. Two specimens from the lower Miocene of Germany showed the structure of fruits of Caricoidea CHANDLER (Cyperaceae) with a single-layered exocarp, thick mesocarp, and sclerified endocarp. The other specimens are recognized as Carpolithes albolutum nom. nov. (incertae sedis) from the Ypresian of the UK, C. phoenixnordensis sp. nov. (incertae sedis) from the upper Eocene of Germany, C. bivascularis comb. nov. (incertae sedis) from the lower Miocene of Germany as well as indeterminate tegmens from the lower Miocene of Germany. This reinvestigation demonstrates that there is, as yet, no confirmed fossil record for the extant genus Alpinia. Furthermore, at least four different taxa are recognized from what had been two extinct species, enhancing our understanding of these important European Cenozoic carpofloras.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador: