899 resultados para UPWELLING DRIVEN
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The aim of this study was to assess the cleaning capacity of the Protaper system using motor-driven or manual instrumentation. Materials and Methods: Ten mandibular molars were randomly separated into 2 groups (n = 5) according to the type of instrumentation performed, as follows: Group 1 - instrumentation with rotary nickel-titanium (Ni-Ti) files using ProTaper Universal System (Dentsply/Maillefer); and, Group 2 - instrumentation with Ni-Ti hand files using ProTaper Universal (Dentsply-Maillefer). Afterwards, the teeth were sectioned transversely and submitted to histotechnical processing to obtain histological sections for microscopic evaluation. The images were analyzed by the Corel Photo-Paint X5 program (Corel Corporation) using an integration grid superimposed on the image. Results: Statistical analysis (U-Mann-Whitney - P < 0.05) demonstrated that G1 presented higher cleaning capacity when compared to G2. Conclusions: The rotary technique presented better cleaning results in the apical third of the root canal system when compared to the manual technique.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In the United States the peak electrical use occurs during the summer. In addition, the building sector consumes a major portion of the annual electrical energy consumption. One of the main energy consuming components in the building sector is the Heating, Ventilation, and Air-Conditioning (HVAC) systems. This research studies the feasibility of implementing a solar driven underground cooling system that could contribute to reducing building cooling loads. The developed system consists of an Earth-to-Air Heat Exchanger (EAHE) coupled with a solar chimney that provides a natural cool draft to the test facility building at the Solar Energy Research Test Facility in Omaha, Nebraska. Two sets of tests have been conducted: a natural passively driven airflow test and a forced fan assisted airflow test. The resulting data of the tests has been analyzed to study the thermal performance of the implemented system. Results show that: The underground soil proved to be a good heat sink at a depth of 9.5ft, where its temperature fluctuates yearly in the range of (46.5°F-58.2°F). Furthermore, the coupled system during the natural airflow modes can provide good thermal comfort conditions that comply with ASHRAE standard 55-2004. It provided 0.63 tons of cooling, which almost covered the building design cooling load (0.8 tons, extreme condition). On the other hand, although the coupled system during the forced airflow mode could not comply with ASHRAE standard 55-2004, it provided 1.27 tons of cooling which is even more than the building load requirements. Moreover, the underground soil experienced thermal saturation during the forced airflow mode due to the oversized fan, which extracted much more airflow than the EAHE ability for heat dissipation and the underground soil for heat absorption. In conclusion, the coupled system proved to be a feasible cooling system, which could be further improved with a few design recommendations.
Resumo:
High-resolution records of the past 2000 yr are compared in a north–south transect (28° N to 24° N) of three cores from the eastern slopes of the Guaymas, Carmen, and Pescadero Basins of the Gulf of California (hereafter referred to as the “Gulf”). Evenly-spaced samples from the varved sediments in each core allow sample resolution ranging from ∼ 16 to ∼ 37 yr. Diatoms and silicoflagellates capture the seasonal variation between a late fall to early spring period of high biosiliceous productivity, that is driven by northwest winds, and a summer period of warmer, more stratified waters during which these winds slacken and/or reverse direction (monsoonal flow). As these winds decrease, tropical waters enter the Gulf and spread northward. Individual samples represent a composite of 7 to 23 yr of deposition and are assumed to record the relative dominance of the winter vs. summer floral components. Intervals of enhanced summer incursion of tropical waters, alternating with periods of increased late fall to early spring biosiliceous productivity are recorded in all three cores. Regularly spaced cycles (∼ 100 yr duration) of Octactis pulchra, a silicoflagellate proxy for lower SST and high productivity, and Azpeitia nodulifera, a tropical diatom, occur between ∼ A.D. 400 and ∼ 1700 in the more nearshore Carmen Basin core, NH01-21 (26.3° N), suggesting a possible solar influence on coastal upwelling. Cores BAM80 E-17 (27.9° N) and NH01-26 (24.3° N) contain longer-duration cycles of diatoms and silicoflagellates. The early part of Medieval Climate Anomaly (∼ A.D. 900 to 1200) is characterized by two periods of reduced productivity (warmer SST) with an intervening high productivity (cool) interval centered at ∼ A.D. 1050. Reduced productivity and higher SST also characterize the record of the last ∼ 100 to 200 yr in these cores. Solar variability appears to be driving productivity cycles, as intervals of increased radiocarbon production (sunspot minima) correlate with intervals of enhanced productivity. It is proposed that increased winter cooling of the atmosphere above southwest U.S. during sunspot minima causes intensification of the northwest winds that blow down the Gulf during the late fall to early spring, leading to intensified overturn of surface waters and enhanced productivity. A new silicoflagellate species, Dictyocha franshepardii Bukry, is described and illustrated.
Resumo:
Deep Sea Drilling Project Site 480 (27°54.10’N, 111°39.34’W; 655 m water depth) contains a high resolution record of paleoceanographic change of the past 15 000 years for the Guaymas Basin, a region of very high diatom productivity within the central Gulf of California. Analyses of diatoms and silicoflagellates were completed on samples spaced every 40-50 yr, whereas ICP-AES geochemical analyses were completed on alternate samples (sample spacing 80-100 yr). The Bolling-Allerod interval (14.6-12.9 ka) (note, ka refers to 1000 calendar years BP throughout this report) is characterized by an increase in biogenic silica and a decline in calcium carbonate relative to surrounding intervals, suggesting conditions somewhat similar to those of today. The Younger Dryas event (12.9-11.6 ka) is marked by a major drop in biogenic silica and an increase in calcium carbonate. Increasing relative percentage contributions of Azpeitia nodulifera and Dictyocha perlaevis (a tropical diatom and silicoflagellate, respectively) and reduced numbers of the silicoflagellate Octactis pulchra are supportive of reduced upwelling of nutrient-rich waters. Between 10.6 and 10.0 ka, calcium carbonate and A. nodulifera abruptly decline at DSDP 480, while Roperia tesselata, a diatom indicative of winter upwelling in the modern-day Gulf, increases sharply in numbers. A nearly coincident increase in the silicoflagellate Dictyocha stapedia suggests that waters above DSDP 480 were more similar to the cooler and slightly more saline waters of the northern Gulf during much of the early and middle parts of the Holocene (~10 to 3.2 ka). At about 6.2 ka a stepwise increase in biogenic silica and the reappearance of the tropical diatom A. nodulifera marks a major change in oceanographic conditions in the Gulf. A winter shift to more northwesterly winds may have occurred at this time along with the onset of periodic northward excursions (El Nino-driven?) of the North Equatorial Countercurrent during the summer. Beginning between 2.8 and 2.4 ka, the amplitude of biogenic silica and wt% Fe, Al, and Ti (proxies of terrigenous input) increase, possibly reflecting intensification of ENSO cycles and the establishment of modern oceanographic conditions in the Gulf. Increased numbers of O. pulchra after 2.8 ka suggest enhanced spring upwelling.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This paper establishes the spawning habitat of the Brazilian sardine Sardinella brasiliensis and investigates the spatial variability of egg density and its relation with oceanographic conditions in the shelf of the south-east Brazil Bight (SBB). The spawning habitats of S. brasiliensis have been defined in terms of spatial models of egg density, temperature-salinity plots, quotient (Q) analysis and remote sensing data. Quotient curves (Q(C)) were constructed using the geographic distribution of egg density, temperature and salinity from samples collected during nine survey cruises between 1976 and 1993. The interannual sea surface temperature (SST) variability was determined using principal component analysis on the SST anomalies (SSTA) estimated from remote sensing data over the period between 1985 and 2007. The spatial pattern of egg occurrences in the SBB indicated that the largest concentration occurred between Paranagua and Sao Sebastiao. Spawning habitat expanded and contracted during the years, fluctuating around Paranagua. In January 1978 and January 1993, eggs were found nearly everywhere along the inner shelf of the SBB, while in January 1988 and 1991 spawning had contracted to their southernmost position. The SSTA maps for the spawning periods showed that in the case of habitat expansion (1993 only) anomalies over the SBB were zero or slightly negative, whereas for the contraction period anomalies were all positive. Sardinella brasiliensis is capable of exploring suitable spawning sites provided by the entrainment of the colder and less-saline South Atlantic Central Water onto the shelf by means of both coastal wind-driven (to the north-east of the SBB) and meander-induced (to the south-west of the SBB) upwelling.
Resumo:
Abundance and composition of marine benthic communities have been relatively well studied in the SE Brazilian coast, but little is known on patterns controlling the distribution of their planktonic larval stages. A survey of larval abundance in the continental margin, using a Multi-Plankton Sampler, was conducted in a cross-shelf transect off Cabo Frio (23 degrees S and 42 degrees W) during a costal upwelling event. Hydrographic conditions were monitored through discrete CDT casts. Chlorophyll-a in the top 100 m of the water column was determined and changes in surface chlorophyll-a was estimated using SeaWiFS images. Based on the larval abundances and the meso-scale hydrodynamics scenario, our results suggest two different processes affecting larval distributions. High larval densities were found nearshore due to the upwelling event associated with high chlorophyll a and strong along shore current. On the continental slope, high larval abundance was associated with a clockwise rotating meander, which may have entrapped larvae from a region located further north (Cabo de Sao Tome, 22 degrees S and 41 degrees W). In mid-shelf areas, our data suggests that vertical migration may likely occur as a response to avoid offshore transport by upwelling plumes and/or cyclonic meanders. The hydrodynamic scenario observed in the study area has two distinct yet extremely important consequences: larval retention on food-rich upwelling areas and the broadening of the tropical domain to southernmost subtropical areas. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The coastal upwelling off Cabo Frio (SE Brazilian coast, SEBC) represents an exception to the world`s oceans since the majority of the upwelling areas are located in eastern boundary current systems. Cabo Frio represents an interesting area for investigation due to its tight physical-biological interaction and the importance of the region as a major fishery area in the SEBC. We analyzed a suite of lipid biomarkers to apportion the main sources of organic matter in surface sediments of the continental shelf off Cabo Frio, comparing the area to non-upwelling regions off the SEBC (shelf break off Cabo Frio and continental shelf off Ubatuba). During spring and summer (the upwelling period), diatoms are probably the major sources of polyunsaturated fatty acids (PUFAs) and C-28 sterols in surface sediments from Cabo Frio continental shelf. Sediments sampled in winter showed, in contrast, lower relative abundance of PUFAs and higher stanol/stenol ratio values. In deeper regions off Cabo Frio, elevated concentrations of alkenones, 24-methylcholest-5,22E-dien-3 beta-ol and 24-ethylcholest-5-en-3 beta-ol during the spring may be produced by prymnesiophytes or cryptophytes and cyanobacteria, respectively. In Ubatuba, the C-27 and C-28 sterols are likely derived from omnivorous salps and nanoflagellates. At non-upwelling areas, despite the increase in biomarker concentrations during spring and summer, lower concentrations of PUFAs, phytol and algal sterols than in shelf areas off Cabo Frio suggest the importance of the upwelling system to the rapid transfer of organic carbon to surface sediments. Our results suggest that spatial and temporal variability in organic matter production and deposition merits consideration for constraining the carbon budgets in the coastal region off Cabo Frio. (C) 2008 Elsevier Ltd. All rights reserved.