973 resultados para Tumour-infiltrating Lymphocyte
Resumo:
BACKGROUND: Atopic dermatitis (AD) is based on a genetic predisposition, but environmental factors may trigger skin inflammation. According to the hygiene hypothesis, decreased exposure to microbial products in early childhood does not allow sufficient maturation of the immune system that is associated with an increased risk of atopic sensitization. OBJECTIVES: The effect of lipopolysaccharide (LPS) on the cytokine production of peripheral blood mononuclear cells (PBMC) of AD patients and nonatopic controls was studied. PATIENTS AND METHODS: PBMC were isolated from heparinized blood of 10 patients with AD and 10 nonatopic individuals, suspended in culture medium and stimulated with LPS. Cytokine levels in the supernatants were measured by immunoassays. Results Upon stimulation with LPS, PBMC from AD patients produced significantly higher amounts of tumour necrosis factor-alpha, interferon-gamma and interleukin (IL)-10 compared with control PBMC. LPS stimulation blocked the increased spontaneous production of IL-4 and IL-5 by PBMC from AD patients, but had no effect on IL-13 production. CONCLUSIONS: These results demonstrate that the effects of LPS stimulation depend on both the type of cytokine and the origin of PBMC. Endotoxin exposure is suggested to modulate the disease course of AD.
Resumo:
Recent observations using multiphoton intravital microscopy (MP-IVM) have uncovered an unexpectedly high lymphocyte motility within peripheral lymph nodes (PLNs). Lymphocyte-expressed intracellular signaling molecules governing interstitial movement remain largely unknown. Here, we used MP-IVM of murine PLNs to examine interstitial motility of lymphocytes lacking the Rac guanine exchange factor DOCK2 and phosphoinositide-3-kinase (PI3K)gamma, signaling molecules that act downstream of G protein-coupled receptors, including chemokine receptors (CKRs). T and B cells lacking DOCK2 alone or DOCK2 and PI3Kgamma displayed markedly reduced motility inside T cell area and B cell follicle, respectively. Lack of PI3Kgamma alone had no effect on migration velocity but resulted in increased turning angles of T cells. As lymphocyte egress from PLNs requires the sphingosine-1-phosphate (S1P) receptor 1, a G(alphai) protein-coupled receptor similar to CKR, we further analyzed whether DOCK2 and PI3Kgamma contributed to S1P-triggered signaling events. S1P-induced cell migration was significantly reduced in T and B cells lacking DOCK2, whereas T cell-expressed PI3Kgamma contributed to F-actin polymerization and protein kinase B phosphorylation but not migration. These findings correlated with delayed lymphocyte egress from PLNs in the absence of DOCK2 but not PI3Kgamma, and a markedly reduced cell motility of DOCK2-deficient T cells in close proximity to efferent lymphatic vessels. In summary, our data support a central role for DOCK2, and to a lesser extent T cell-expressed PI3Kgamma, for signal transduction during interstitial lymphocyte migration and S1P-mediated egress.
Resumo:
The lymphocyte transformation response to the mitogen phytohaemagglutinin (PHA) was determined in 15 well controlled insulin-dependent diabetics (IDD) with a history of insulin allergy or an acute insulin allergy. There was no significant difference in the PHA response of IDD and normal subjects matched in respect of age and sex. The response of peripheral blood lymphocytes to insulin (Actrapid) and an insulin zinc suspension (Monotard) was also determined. Fifty-three percent of IDD gave a positive reaction to Actrapid. Monotard produced positive reactions both in IDD and normal subjects. In normal subjects, a close correlation between the stimulation indices of Monotard and PHA was found (r = 0 . 966) suggesting that these stimulations depend on a common parameter namely, the reactivity to mitogens.
Resumo:
Matrix metalloproteinases (MMPs) and tumour necrosis factor alpha (TNF-alpha) converting enzyme (TACE) contribute synergistically to the pathophysiology of bacterial meningitis. TACE proteolytically releases several cell-surface proteins, including the proinflammatory cytokine TNF-alpha and its receptors. TNF-alpha in turn stimulates cells to produce active MMPs, which facilitate leucocyte extravasation and brain oedema by degradation of extracellular matrix components. In the present time-course studies of pneumococcal meningitis in infant rats, MMP-8 and -9 were 100- to 1000-fold transcriptionally upregulated, both in CSF cells and in brain tissue. Concentrations of TNF-alpha and MMP-9 in CSF peaked 12 h after infection and were closely correlated. Treatment with BB-1101 (15 mg/kg subcutaneously, twice daily), a hydroxamic acid-based inhibitor of MMP and TACE, downregulated the CSF concentration of TNF-alpha and decreased the incidences of seizures and mortality. Therapy with BB-1101, together with antibiotics, attenuated neuronal necrosis in the cortex and apoptosis in the hippocampus when given as a pretreatment at the time of infection and also when administration was started 18 h after infection. Functionally, the neuroprotective effect of BB-1101 preserved learning performance of rats assessed 3 weeks after the disease had been cured. Thus, combined inhibition of MMP and TACE offers a novel therapeutic strategy to prevent brain injury and neurological sequelae in bacterial meningitis.
Resumo:
Lymphocyte stimulation tests (LST) were performed in five dogs sensitised with ovalbumin (OVA) and seven healthy dogs. In addition, all five OVA-sensitised and two control dogs were tested after two in vivo provocations with OVA-containing eye drops. The isolated cells were suspended in culture media containing OVA and were cultured for up to 12 days. Proliferation was measured as reduction in 5,6-carboxylfluorescein diacetate succinimidyl ester (CFSE) intensity by flow cytometry on days 0, 3, 6, 9 and 12. A cell proliferation index (CPI) for each day and the area under the curve (AUC) of the CPI was calculated for each dog. All OVA-sensitised dogs demonstrated increased erythema after conjunctival OVA application. The presence of OVA-specific lymphocytes was demonstrated in 2/5 OVA-sensitised dogs before and 4/5 after in vivo provocation. Using the AUC, the difference between OVA-sensitised and control dogs was significant in all three LST before in vivo provocation (P<0.05) and borderline significant (P=0.053) in 2/3 LST after provocation. The most significant difference in CPI was observed after 9 days of culture (P=0.001). This pilot study indicates that the LST allows detection of rare antigen specific memory T-cells in dogs previously sensitised to, but not concurrently undergoing challenge by a specific antigen.
Resumo:
A hallmark of acute myeloid leukaemia (AML) is a block in differentiation caused by deregulated gene expression. The tumour suppressor Hypermethylated In Cancer 1 (HIC1) is a transcriptional repressor, which is epigenetically silenced in solid cancers. HIC1 mRNA expression was found to be low in 128 patient samples of AML and CD34+ progenitor cells when compared with terminally differentiated granulocytes. HIC1 mRNA was induced in a patient with t(15;17)-positive acute promyelocytic leukaemia receiving all-trans retinoic acid (ATRA) therapy. We therefore investigated whether HIC1 plays a role in granulocytic differentiation and whether loss of function of this gene might contribute to the differentiation block in AML. We evaluated HIC1 mRNA levels in HL-60 and U-937 cells upon ATRA-induced differentiation and in CD34+ progenitor cells after granulocyte colony-stimulating factor-induced differentiation. In both models of granulocytic differentiation, we observed significant HIC1 induction. When HIC1 mRNA was suppressed in HL-60 cells using stably expressed short hairpin RNA targeting HIC1, granulocytic differentiation was altered as assessed by CD11b expression. Bisulphite sequencing of GC-rich regions (CpG islands) in the HIC1 promoter provided evidence that the observed suppression in HL-60 cells was not because of promoter hypermethylation. Our findings indicate a role for the tumour suppressor gene HIC1 in granulocytic differentiation. Low expression of HIC1 may very well contribute to pathogenic events in leukaemogenesis.
Resumo:
Somatostatin-based radioligands have been shown to have sensitive imaging properties for neuroendocrine tumours and their metastases. The potential of [(55)Co(dotatoc)] (dotatoc =4,7,10-tricarboxymethyl-1,4,7,10-tetraazacyclododecane-1-ylacetyl-D-Phe-(Cys-Tyr-D-Trp-Lys-Thr-Cys)-threoninol (disulfide bond)) as a new radiopharmaceutical agent for PET has been evaluated. (57)Co was used as a surrogate of the positron emitter (55)Co and the pharmacokinetics of [(57)Co(dotatoc)] were investigated by using two nude mouse models. The somatostatin receptor subtype (sst1-sst5) affinity profile of [(nat)Co(dotatoc)] on membranes transfected with human somatostatin receptor subtypes was assessed by using autoradiographic methods. These studies revealed that [(57)Co(dotatoc)] is an sst2-specific radiopeptide which presents the highest affinity ever found for the sst2 receptor subtype. The rate of internalisation into the AR4-2J cell line also was the highest found for any somatostatin-based radiopeptide. Biodistribution studies, performed in nude mice bearing an AR4-2J tumour or a transfected HEK-sst2 cell-based tumour, showed high and specific uptake in the tumour and in other sst-receptor-expressing tissues, which reflects the high receptor binding affinity and the high rate of internalisation. The pharmacologic differences between [(57)Co(dotatoc)] and [(67)Ga(dotatoc)] are discussed in terms of the structural parameters found for the chelate models [Co(II)(dota)](2-) and [Ga(III)(dota)](-) whose X-ray structures have been determined. Both chelates show six-fold coordination in pseudo-octahedral arrangements.
Resumo:
OBJECTIVE: Pregnancy is associated with reduced disease activity in rheumatoid arthritis (RA) and frequently with disease exacerbation after delivery. This study was undertaken to generate a systematic overview of the molecular mechanisms related to disease remission and postpartum reactivation. METHODS: Transcriptomes of peripheral blood mononuclear cells (PBMCs) were generated from RA patients and healthy women by transcription profiling during the third trimester and 24 weeks after delivery. For functional interpretation, signatures of highly purified immune cells as well as Kyoto Encyclopedia of Genes and Genomes pathway annotations were used as a reference. RESULTS: Only minor differences in gene expression in PBMCs during pregnancy were found between RA patients and controls. In contrast, RA postpartum profiles presented the most dominant changes. Systematic comparison with expression signatures of monocytes, T cells, and B cells in healthy donors revealed reduced lymphocyte and elevated monocyte gene activity during pregnancy in patients with RA and in controls. Monocyte activity decreased after delivery in controls but persisted in RA patients. Furthermore, analysis of 32 immunologically relevant cellular pathways demonstrated a significant additional activation of genes related to adhesion, migration, defense of pathogens, and cell activation, including Notch, phosphatidylinositol, mTOR, Wnt, and MAPK signaling, in RA patients postpartum. CONCLUSION: Our findings indicate that innate immune functions play an important role in postpartum reactivation of arthritis. However, this may depend not only on the monocyte itself, but also on the recurrence of lymphocyte functions postpartum and thus on a critical interaction between both arms of the immune system.
Alefacept (lymphocyte function-associated molecule 3/IgG fusion protein) treatment for atopic eczema
Resumo:
OBJECTIVE: We analysed the production of soluble tumour necrosis factor receptors sTNFR1 and sTNFR2 at sites of inflammation and measured their plasma concentrations to evaluate them as biological markers of disease activity. METHODS: Plasma samples of 35 patients with Behçet's disease (BD) were collected prospectively at monthly intervals and grouped for inactive disease, active BD without arthritis, and active BD with arthritis. sTNFR1 and sTNFR2 concentrations were measured using immunoassays and compared with other biological disease activity parameters. Plasma sTNFR levels were compared to synovial fluid (SF) levels in seven patients. Sixteen tissue samples of mucocutaneous lesions were stained for TNFR2 expression by immunohistochemistry. RESULTS: sTNFR1 and sTNFR2 were found at increased plasma concentrations in active BD, with the highest concentration in active BD with arthritis (p<0.001). Concentrations of both sTNFRs were at least three times higher in SF of arthritic joints than in the corresponding plasma samples (p = 0.025). A change of more than 1 ng/mL of sTNFR2 plasma concentrations correlated with a concordant change in arthritic activity (96% confidence interval). Sensitivity to change was superior to that of sTNFR1, and other biological disease activity parameters such as erythrocyte sedimentation rate (ESR), immunoglobulin (Ig)G, IgA, and interleukin (IL)-10 plasma concentrations. A strong staining for TNFR2 was found in mucocutaneous lesions, where mast cells were identified as the major source for this receptor. CONCLUSIONS: This longitudinal study demonstrates that sTNFR2 plasma concentrations are closely linked with active BD, and especially with arthritis. Taken together with the expression of TNFR molecules in mast cells of mucocutaneous lesions, our results indicate a fundamental role for the TNF/TNFR pathway in BD.
Resumo:
Hepatitis C virus (HCV) clearance has been associated with reduced viral evolution in targeted cytotoxic T-lymphocyte (CTL) epitopes, suggesting that HCV clearers may mount CTL responses with a superior ability to recognize epitope variants and prevent viral immune escape. Here, 40 HCV-infected subjects were tested with 406 10-mer peptides covering the vast majority of the sequence diversity spanning a 197-residue region of the NS3 protein. HCV clearers mounted significantly broader CTL responses of higher functional avidity and with wider variant cross-recognition capacity than nonclearers. These observations have important implications for vaccine approaches that may need to induce high-avidity responses in vivo.
Resumo:
Eotaxin/CCL11 chemokine is expressed in different organs, including the heart, but its precise cellular origin in the heart is unknown. Eotaxin is associated with Th2-like responses and exerts its chemotactic effect through the chemokine receptor-3 (CCR3), which is also expressed on mast cells (MC). The aim of our study was to find the cellular origin of eotaxin in the heart, and to assess whether expression is changing during ongoing acute heart transplant rejection, indicating a correlation with mast cell infiltration which we observed in a previous study. In a model of ongoing acute heart transplant rejection in the rat, we found eotaxin mRNA expression within infiltrating macrophages, but not in mast cells, by in situ-hybridization. A five-fold increase in eotaxin protein in rat heart transplants during ongoing acute rejection was measured on day 28 after transplantation, compared to native and isogeneic control hearts. Eotaxin concentrations in donor hearts on day 28 after transplantation were significantly higher compared to recipient hearts, corroborating an origin of eotaxin from cells within the heart, and not from the blood. The quantitative comparison of eotaxin mRNA expression between native hearts, isografts, and allografts, respectively, revealed no statistically significant difference after transplantation, probably due to an overall increase in the housekeeping gene's 18S rRNA during rejection. Quantitative RT-PCR showed an increase in mRNA expression of CCR3, the receptor for eotaxin, during ongoing acute rejection of rat heart allografts. Although a correlation between increasing eotaxin expression by macrophages and mast cell infiltration is suggestive, functional studies will elucidate the role of eotaxin in the process of ongoing acute heart transplant rejection.