993 resultados para Transportation Engineering
Resumo:
Knowledge based urban development (KBUD) is a new paradigm in urban planning tailoring to the era of knowledge economy. It aims mainly to assist a contemporary city to promote a more sustainable socio-spatial order. The paper reports on the investigation of KBUD initiative in Malaysia which is manifested through the establishment of a project called Multimedia Super Corridor (MSC). MSC Malaysia aims to attract knowledge workers and industries to invest and operate within the area by creating a world class urban corridor with state-of-the-art multimedia infrastructure, efficient transportation system and an attractive living environment. Based on documents analysis and interviews, this paper analyses the strategies, implementations, and achievements of KBUD initiative in Cyberjaya, being the leading intelligent city of the unique Malaysia’s KBUD project-MSC Malaysia. A critical evaluation is made to assess the achievements of MSC, by looking at the physical changes after about ten years since its official launching. The findings recommend some valuable lessons for other cities that strive to develop KBUD strategies, strengthen their sustainable socio-spatial policies, and seek a global recognition.
Resumo:
Inter-Vehicular Communications (IVC) are considered a promising technological approach for enhancing transportation safety and improving highway efficiency. Previous theoretical work has demonstrated the benefits of IVC in vehicles strings. Simulations of partially IVC-equipped vehicles strings showed that only a small equipment ratio is sufficient to drastically reduce the number of head on collisions. However, these results are based on the assumptions that IVC exhibit lossless and instantaneous messages transmission. This paper presents the research design of an empirical measurement of a vehicles string, with the goal of highlighting the constraints introduced by the actual characteristics of communication devices. A warning message diffusion system based on IEEE 802.11 wireless technology was developed for an emergency breaking scenario. Preliminary results are presented as well, showing the latencies introduced by using 802.11a and discussing early findings and experimental limitations
Resumo:
Introducing engineering-based model-eliciting experiences in the elementary curriculum is a new and increasingly important domain of research by mathematics, science, technology, and engineering educators. Recent research has raised questions about the context of engineering problems that are meaningful, engaging, and inspiring for young students. In the present study an environmental engineering activity was implemented in two classes of 11-year-old students in Cyprus. The problem required students to develop a procedure for selecting among alternative countries from which to buy water. Students created a range of models that adequately solved the problem although not all models took into account all of the data provided. The models varied in the number of problem factors taken into consideration and also in the different approaches adopted in dealing with the problem factors. At least two groups of students integrated into their models the environmental aspect of the problem (energy consumption, water pollution) and further refined their models. Results indicate that engineering model-eliciting activities can be introduced effectively into the elementary curriculum, providing rich opportunities for students to deal with engineering contexts and to apply their learning in mathematics and science to solving real-world engineering problems.
Resumo:
Low oxygen pressure (hypoxia) plays an important role in stimulating angiogenesis; there are, however, few studies to prepare hypoxia-mimicking tissue engineering scaffolds. Mesoporous bioactive glass (MBG) has been developed as scaffolds with excellent osteogenic properties for bone regeneration. Ionic cobalt (Co) is established as a chemical inducer of hypoxia-inducible factor (HIF)-1α, which induces hypoxia-like response. The aim of this study was to develop hypoxia-mimicking MBG scaffolds by incorporating ionic Co2+ into MBG scaffolds and investigate if the addition of Co2+ ions would induce a cellular hypoxic response in such a tissue engineering scaffold system. The composition, microstructure and mesopore properties (specific surface area, nano-pore volume and nano-pore distribution) of Co-containing MBG (Co-MBG) scaffolds were characterized and the cellular effects of Co on the proliferation, differentiation, vascular endothelial growth factor (VEGF) secretion, HIF-1α expression and bone-related gene expression of human bone marrow stromal cells (BMSCs) in MBG scaffolds were systematically investigated. The results showed that low amounts of Co (< 5%) incorporated into MBG scaffolds had no significant cytotoxicity and that their incorporation significantly enhanced VEGF protein secretion, HIF-1α expression, and bone-related gene expression in BMSCs, and also that the Co-MBG scaffolds support BMSC attachment and proliferation. The scaffolds maintain a well-ordered mesopore channel structure and high specific surface area and have the capacity to efficiently deliver antibiotics drugs; in fact, the sustained released of ampicillin by Co-MBG scaffolds gives them excellent anti-bacterial properties. Our results indicate that incorporating cobalt ions into MBG scaffolds is a viable option for preparing hypoxia-mimicking tissue engineering scaffolds and significantly enhanced hypoxia function. The hypoxia-mimicking MBG scaffolds have great potential for bone tissue engineering applications by combining enhanced angiogenesis with already existing osteogenic properties.
Resumo:
This paper investigates a strategy for guiding school-based active travel intervention. School-based active travel programs address the travel behaviors and perceptions of small target populations (i.e., at individual schools) so they can encourage people to walk or bike. Thus, planners need to know as much as possible about the behaviors and perceptions of their target populations. However, existing strategies for modeling travel behavior and segmenting audiences typically work with larger populations and may not capture the attitudinal diversity of smaller groups. This case study used Q technique to identify salient travel-related attitude types among parents at an elementary school in Denver, Colorado; 161 parents presented their perspectives about school travel by rank-ordering 36 statements from strongly disagree to strongly agree in a normalized distribution, single centered around no opinion. Thirty-nine respondents' cases were selected for case-wise cluster analysis in SPSS according to criteria that made them most likely to walk: proximity to school, grade, and bus service. Analysis revealed five core perspectives that were then correlated with the larger respondent pool: optimistic walkers, fair-weather walkers, drivers of necessity, determined drivers, and fence sitters. Core perspectives are presented—characterized by parents' opinions, personal characteristics, and reported travel behaviors—and recommendations are made for possible intervention approaches. The study concludes that Q technique provides a fine-grained assessment of travel behavior for small populations, which would benefit small-scale behavioral interventions
Resumo:
Fiber Bragg grating (FBG) sensor technology has been attracting substantial industrial interests for the last decade. FBG sensors have seen increasing acceptance and widespread use for structural sensing and health monitoring applications in composites, civil engineering, aerospace, marine, oil & gas, and smart structures. One transportation system that has been benefitted tremendously from this technology is railways, where it is of the utmost importance to understand the structural and operating conditions of rails as well as that of freight and passenger service cars to ensure safe and reliable operation. Fiberoptic sensors, mostly in the form of FBGs, offer various important characteristics, such as EMI/RFI immunity, multiplexing capability, and very long-range interrogation (up to 230 km between FBGs and measurement unit), over the conventional electrical sensors for the distinctive operational conditions in railways. FBG sensors are unique from other types of fiber-optic sensors as the measured information is wavelength-encoded, which provides self-referencing and renders their signals less susceptible to intensity fluctuations. In addition, FBGs are reflective sensors that can be interrogated from either end, providing redundancy to FBG sensing networks. These two unique features are particularly important for the railway industry where safe and reliable operations are the major concerns. Furthermore, FBGs are very versatile and transducers based on FBGs can be designed to measure a wide range of parameters such as acceleration and inclination. Consequently, a single interrogator can deal with a large number of FBG sensors to measure a multitude of parameters at different locations that spans over a large area.
Resumo:
Electricity has been the major source of power in most railway systems. Reliable, efficient and safe power distribution to the trains is vitally important to the overall quality of railway service. Like any large-scale engineering system, design, operation and planning of traction power systems rely heavily on computer simulation. This paper reviews the major features on modelling and the general practices for traction power system simulation; and introduces the development of the latest simulation approach with discussions on simulation results and practical applications. Remarks will also be given on the future challenges on traction power system simulation.
Resumo:
This paper provides fundamental understanding for the use of cumulative plots for travel time estimation on signalized urban networks. Analytical modeling is performed to generate cumulative plots based on the availability of data: a) Case-D, for detector data only; b) Case-DS, for detector data and signal timings; and c) Case-DSS, for detector data, signal timings and saturation flow rate. The empirical study and sensitivity analysis based on simulation experiments have observed the consistency in performance for Case-DS and Case-DSS, whereas, for Case-D the performance is inconsistent. Case-D is sensitive to detection interval and signal timings within the interval. When detection interval is integral multiple of signal cycle then it has low accuracy and low reliability. Whereas, for detection interval around 1.5 times signal cycle both accuracy and reliability are high.
Resumo:
Many of the teaching elements in Civil and Environmental Engineering and Spatial Science/Surveying are strongly related to multidisciplinary real-world situations. Professionals in each discipline commonly work collaboratively, knowing each other’s professional and technical limitations and requirements. Replication of such real-world situations allows students to gain an insight and acquire knowledge of professional practice for both civil engineering and spatial science disciplines. However, replication of an authentic design project is not always possible in a single unit basis where empirical project situations are often created with controlled sets of constraints, inputs and outputs. A cross-disciplinary design-based project that is designed to promote active student learning, engagement and professional integration would be the preferred option. The central aim of this collaborative project was to create positive and inclusive environments to promote engaging learning opportunities that cater for a range of learning styles with a two-way linkage involving third-year civil engineering and spatial science (surveying) students. This paper describes the cross-disciplinary project developed and delivered in 2010 and 2011. A survey was conducted at completion of the project to assess the degree of improvement in student engagement and their learning experiences. Improvements were assessed in a range of dimensions including student motivation, learning by cross-disciplinary collaboration and learning by authentic design project experiences. In this specific cross-disciplinary linkage project, the study findings showed that teaching approaches utilised have been effective in promoting active student learning and increasing engagement.
Resumo:
Train delay is one of the most important indexes to evaluate the service quality of the railway. Because of the interactions of movement among trains, a delayed train may conflict with trains scheduled on other lines at junction area. Train that loses conflict may be forced to stop or slow down because of restrictive signals, which consequently leads to the loss of run-time and probably enlarges more delays. This paper proposes a time-saving train control method to recover delays as soon as possible. In the proposed method, golden section search is adopted to identify the optimal train speed at the expected time of restrictive signal aspect upgrades, which enables the train to depart from the conflicting area as soon as possible. A heuristic method is then developed to attain the advisory train speed profile assisting drivers in train control. Simulation study indicates that the proposed method enables the train to recover delays as soon as possible in case of disturbances at railway junctions, in comparison with the traditional maximum traction strategy and the green wave strategy.
Resumo:
Evaluating the safety of different traffic facilities is a complex and crucial task. Microscopic simulation models have been widely used for traffic management but have been largely neglected in traffic safety studies. Micro simulation to study safety is more ethical and accessible than the traditional safety studies, which only assess historical crash data. However, current microscopic models are unable to mimic unsafe driver behavior, as they are based on presumptions of safe driver behavior. This highlights the need for a critical examination of the current microscopic models to determine which components and parameters have an effect on safety indicator reproduction. The question then arises whether these safety indicators are valid indicators of traffic safety. The safety indicators were therefore selected and tested for straight motorway segments in Brisbane, Australia. This test examined the capability of a micro-simulation model and presents a better understanding of micro-simulation models and how such models, in particular car following models can be enriched to present more accurate safety indicators.
Resumo:
Building Information Modeling (BIM) is a modern approach to the design, documentation, delivery, and life cycle management of buildings through the use of project information databases coupled with object-based parametric modeling. BIM has the potential to revolutionize the Architecture, Engineering and Construction (AEC) industry in terms of the positive impact it may have on information flows, working relationships between project participants from different disciplines and the resulting benefits it may achieve through improvements to conventional methods. This chapter reviews the development of BIM, the extent to which BIM has been implemented in Australia, and the factors which have affected the up-take of BIM. More specifically, the objectives of this chapter are to investigate the adoption of BIM in the Australian AEC industry and factors that contribute towards the uptake (or non uptake) of BIM. These objectives are met by a review of the related literature in the first instance, followed by the presentation of the results of a 2007 postal questionnaire survey and telephone interviews of a random sample of professionals in the Australian AEC industry. The responses suggest that less than 25 percent of the sample had been involved in BIM – rather less than might be expected from reading the literature. Also, of those who have been involved with BIM, there has been very little interdisciplinary collaboration. The main barriers impeding the implementation of BIM widely across the Australian AEC industry are also identified. These were found to be primarily a lack of BIM expertise, lack of awareness and resistance to change. The benefits experienced as a result of using BIM are also discussed. These include improved design consistency, better coordination, cost savings, higher quality work, greater productivity and increased speed of delivery. In terms of conclusion, some suggestions are made concerning the underlying practical reasons for the slow up-take of BIM and the successes for those early adopters. Prospects for future improvement are discussed and proposals are also made for a large scale worldwide comparative study covering industry-wide participants
Resumo:
This paper closely examines factors affecting students’ progression in their engineering programs through fieldwork conducted at three Australian universities. To extract clues on how specific teaching methods can be used to maximize learning, the investigation considered factors such as understanding how students take in, process and present information. A number of focus groups were conducted with students and the data gathered was combined with survey results of students’ and academics’ learning styles. The paper reports on the process followed, and provides some analysis of the gathered data, as part of an Australian Learning and Teaching Council, ALTC, Associate Fellowship program.
Resumo:
Currently, well established clinical therapeutic approaches for bone reconstruction are restricted to the transplantation of autografts and allografts, and the implantation of metal devices or ceramic-based implants to assist bone regeneration. Bone grafts possess osteoconductive and osteoinductive properties, their application, however, is associated with disadvantages. These include limited access and availability, donor site morbidity and haemorrhage, increased risk of infection, and insufficient transplant integration. As a result, recent research focuses on the development of complementary therapeutic concepts. The field of tissue engineering has emerged as an important alternative approach to bone regeneration. Tissue engineering unites aspects of cellular biology, biomechanical engineering, biomaterial sciences and trauma and orthopaedic surgery. To obtain approval by regulatory bodies for these novel therapeutic concepts the level of therapeutic benefit must be demonstrated rigorously in well characterized, clinically relevant animal models. Therefore, in this PhD project, a reproducible and clinically relevant, ovine, critically sized, high load bearing, tibial defect model was established and characterized as a prerequisite to assess the regenerative potential of a novel treatment concept in vivo involving a medical grade polycaprolactone and tricalciumphosphate based composite scaffold and recombinant human bone morphogenetic proteins.