963 resultados para Transcription divergente


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presence of damaged nucleobases in DNA can negatively influence transcription of genes. One of the mechanisms by which DNA damage interferes with reading of genetic information is a direct blockage of the elongating RNA polymerase complexes – an effect well described for bulky adducts induced by several chemical substances and UV-irradiation. However, other mechanisms must exist as well because many of the endogenously occurring non-bulky DNA base modifications have transcription-inhibitory properties in cells, whilstrnnot constituting a roadblock for RNA polymerases under cell free conditions. The inhibition of transcription by non-blocking DNA damage was investigated in this work by employing the reporter gene-based assays. Comparison between various types of DNA damage (UV-induced pyrimidine photoproducts, oxidative purine modifications induced by photosensitisation, defined synthetic modified bases such as 8-oxoguanine and uracil, and sequence-specific single-strand breaks) showed that distinct mechanisms of inhibition of transcription can be engaged, and that DNA repair can influence transcription of the affectedrngenes in several different ways.rnQuantitative expression analyses of reporter genes damaged either by the exposure of cells to UV or delivered into cells by transient transfection supported the earlier evidence that transcription arrest at the damage sites is the major mechanism for the inhibition of transcription by this kind of DNA lesions and that recovery of transcription requires a functional nucleotide excision repair gene Csb (ERCC6) in mouse cells. In contrast, oxidisedrnpurines generated by photosensitisation do not cause transcriptional blockage by a direct mechanism, but rather lead to transcriptional repression of the damaged gene which is associated with altered histone acetylation in the promoter region. The whole chain of events leading to transcriptional silencing in response to DNA damage remains to be uncovered. Yet, the data presented here identify repair-induced single-strand breaks – which arise from excision of damaged bases by the DNA repair glycosylases or endonucleases – as arnputative initiatory factor in this process. Such an indirect mechanism was supported by requirement of the 8-oxoguanine DNA glycosylase (OGG1) for the inhibition of transcription by synthetic 8-oxodG incorporated into a reporter gene and by the delays observed for the inhibition of transcription caused by structurally unrelated base modifications (8-oxoguanine and uracil). It is thereby hypothesized that excision of the modified bases could be a generalrnmechanism for inhibition of transcription by DNA damage which is processed by the base excision repair (BER) pathway. Further gene expression analyses of plasmids containing single-strand breaks or abasic sites in the transcribed sequences revealed strong transcription inhibitory potentials of these lesions, in agreement with the presumption that BER intermediates are largely responsible for the observed effects. Experiments with synthetic base modifications positioned within the defined DNA sequences showed thatrninhibition of transcription did not require the localisation of the lesion in the transcribed DNA strand; therefore the damage sensing mechanism has to be different from the direct encounters of transcribing RNA polymerase complexes with DNA damage.rnAltogether, this work provides new evidence that processing of various DNA basernmodifications by BER can perturb transcription of damaged genes by triggering a gene silencing mechanism. As gene expression can be influenced even by a single DNA damage event, this mechanism could have relevance for the endogenous DNA damage induced in cells under normal physiological conditions, with a possible link to gene silencing in general.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transcription factors play a key role in the commitment of hematopoietic stem cells to differentiate into specific lineages [78]. This is particularly important in that a block in terminal differentiation is the key contributing factor in acute leukemias. This general theme of the role of transcription factors in differentiation may also extend to other tissues, both in terms of normal development and cancer. Consistent with the role of transcription factors in hematopoietic lineage commitment is the frequent finding of aberrations in transcription factors in AML patients. Here, we intend to review recent findings on aberrations in lineage-restricted transcription factors as observed in patients with acute myeloid leukemia (AML).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dendritic cells (DC) are professional antigen presenting cells that represent an important link between innate and adaptive immunity. Danger signals such as toll-like receptor (TLR) agonists induce maturation of DC leading to a T-cell mediated adaptive immune response. In this study, we show that exogenous as well as endogenous inflammatory stimuli for TLR4 and TLR2 induce the expression of HIF-1alpha in human monocyte-derived DC under normoxic conditions. On the functional level, inhibition of HIF-1alpha using chetomin (CTM), YC-1 and digoxin lead to no consistent effect on MoDC maturation, or cytokine secretion despite having the common effect of blocking HIF-1alpha stabilization or activity through different mechanisms. Stabilization of HIF-1alpha protein by hypoxia or CoCl(2) did not result in maturation of human DC. In addition, we could show that TLR stimulation resulted in an increase of HIF-1alpha controlled VEGF secretion. These results show that stimulation of human MoDC with exogenous as well as endogenous TLR agonists induces the expression of HIF-1alpha in a time-dependent manner. Hypoxia alone does not induce maturation of DC, but is able to augment maturation after TLR ligation. Current evidence suggests that different target genes may be affected by HIF-1alpha under normoxic conditions with physiological roles that differ from those induced by hypoxia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The extracellular matrix protein tenascin-C (TNC) is up-regulated in processes influenced by mechanical stress, such as inflammation, tissue remodeling, wound healing, and tumorigenesis. Cyclic strain-induced TNC expression depends on RhoA-actin signaling, the pathway that regulates transcriptional activity of serum response factor (SRF) by its coactivator megakaryoblastic leukemia-1 (MKL1). Therefore, we tested whether MKL1 controls TNC transcription. We demonstrate that overexpression of MKL1 strongly induces TNC expression in mouse NIH3T3 fibroblasts and normal HC11 and transformed 4T1 mammary epithelial cells. Part of the induction was dependant on SRF and a newly identified atypical CArG box in the TNC promoter. Another part was independent of SRF but required the SAP domain of MKL1. An MKL1 mutant incapable of binding to SRF still strongly induced TNC, while induction of the SRF target c-fos was abolished. Cyclic strain failed to induce TNC in MKL1-deficient but not in SRF-deficient fibroblasts, and strain-induced TNC expression strongly depended on the SAP domain of MKL1. Promoter-reporter and chromatin immunoprecipitation experiments unraveled a SAP-dependent, SRF-independent interaction of MKL1 with the proximal promoter region of TNC, attributing for the first time a functional role to the SAP domain of MKL1 in regulating gene expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We recently identified the transcription factor (TF) islet 1 gene product (ISL1) as a marker for well-differentiated pancreatic neuroendocrine tumors (P-NETs). In order to better understand the expression of the four TFs, ISL1, pancreatico-duodenal homeobox 1 gene product (PDX1), neurogenin 3 gene product (NGN3), and CDX-2 homeobox gene product (CDX2), that mainly govern the development and differentiation of the pancreas and duodenum, we studied their expression in hormonally defined P-NETs and duodenal (D-) NETs. Thirty-six P-NETs and 14 D-NETs were immunostained with antibodies against the four pancreatic hormones, gastrin, serotonin, calcitonin, ISL1, PDX1, NGN3, and CDX2. The TF expression pattern of each case was correlated with the tumor's hormonal profile. Insulin-positive NETs expressed only ISL1 (10/10) and PDX1 (9/10). Glucagon-positive tumors expressed ISL1 (7/7) and were almost negative for the other TFs. Gastrin-positive NETs, whether of duodenal or pancreatic origin, frequently expressed PDX1 (17/18), ISL1 (14/18), and NGN3 (14/18). CDX2 was mainly found in the gastrin-positive P-NETs (5/8) and rarely in the D-NETs (1/10). Somatostatin-positive NETs, whether duodenal or pancreatic in origin, expressed ISL1 (9/9), PDX1 (3/9), and NGN3 (3/9). The remaining tumors showed labeling for ISL1 in addition to NGN3. There was no association between a particular TF pattern and NET features such as grade, size, location, presence of metastases, and functional activity. We conclude from our data that there is a correlation between TF expression patterns and certain hormonally defined P-NET and D-NET types, suggesting that most of the tumor types originate from embryologically determined precursor cells. The observed TF signatures do not allow us to distinguish P-NETs from D-NETs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increasing relevance of the cancer stem cell (CSC) hypothesis and the impact of CSC-associated markers in the carcinogenesis of solid tumours may provide potential prognostic implications in lung cancer. We propose that a collective genetic analysis of established CSC-related markers will generate data to better define the role of putative CSCs in lung adenocarcinoma (LAC).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Cancer initiation and progression might be driven by small populations of cells endowed with stem cell-like properties. Here we comparatively addressed the expression of genes encoding putative stemness regulators including c-Myc, Klf4, Nanog, Oct4A and Sox2 genes in benign prostatic hyperplasia (BPH) and prostate cancer (PCA). METHODS: Fifty-eight PCA and thirty-nine BPH tissues samples were used for gene expression analysis, as evaluated by quantitative real-time polymerase chain reaction (qRT-PCR). The expression of specific Klf4 isoforms was tested by conventional PCR. Klf4 specific antibodies were used for protein detection in a tissue microarray including 404 prostate samples. RESULTS: Nanog, Oct4A and Sox2 genes were comparably expressed in BPH and PCA samples, whereas c-Myc and Klf4 genes were expressed to significantly higher extents in PCA than in BPH specimens. Immunohistochemical studies revealed that Klf4 protein is detectable in a large majority of epithelial prostatic cells, irrespective of malignant transformation. However, in PCA, a predominantly cytoplasmic location was observed, consistent with the expression of a differentially spliced Klf4α isoform. CONCLUSION: Klf4 is highly expressed at gene and protein level in BPH and PCA tissues but a cytoplasmic location of the specific gene product is predominantly detectable in malignant cells. Klf4 location might be of critical relevance to steer its functions during oncogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we present the Transcription Factor Encyclopedia (TFe), a new web-based compendium of mini review articles on transcription factors (TFs) that is founded on the principles of open access and collaboration. Our consortium of over 100 researchers has collectively contributed over 130 mini review articles on pertinent human, mouse and rat TFs. Notable features of the TFe website include a high-quality PDF generator and web API for programmatic data retrieval. TFe aims to rapidly educate scientists about the TFs they encounter through the delivery of succinct summaries written and vetted by experts in the field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transcription factor PU.1 plays a crucial role during normal haematopoiesis in both myeloid cells and B-lymphocytes. Mice with a disruption in both alleles of the PU.1 locus were found to lack macrophages and B cells and had delayed appearance of neutrophils. In addition, critical decrease of PU.1 expression is sufficient to cause acute myeloid leukaemia (AML) and lymphomas in mice. Recently, we reported that heterozygous mutations in the PU.1 gene are present in some patients with AML. Thus, we hypothesised that PU.1 mutations might also contribute to the development of acute leukaemias of the B-cell lineage. Here, we screened 62 patients with B-cell acute lymphoblastic leukaemia (B-ALL) at diagnosis for genomic mutations by direct sequencing of all five exons of the PU.1 gene. We found no genomic alteration of the PU.1 gene suggesting that PU.1 mutations are not likely to be common in B-ALL.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transcription factor CEBPA is crucial for normal myeloid differentiation. CEBPA gene mutations have been reported in patients with acute myeloid leukaemia. The inevitable evolution of chronic myeloid leukaemia (CML) in chronic phase (CP) to a fatal blast crisis (BC) is assumed to result from the acquisition of additional genetic changes in the leukaemic clone. Gain of CEBPA mutations might represent a key event causing the differentiation block observed in myeloid CML-BC, but not in CML-CP. Here, no CEBPA mutation in 95 CML-BC patients was found, suggesting a limited role, if any, of CEBPA mutations in this disorder.