817 resultados para Tracking error
Resumo:
The theta-logistic is a widely used generalisation of the logistic model of regulated biological processes which is used in particular to model population regulation. Then the parameter theta gives the shape of the relationship between per-capita population growth rate and population size. Estimation of theta from population counts is however subject to bias, particularly when there are measurement errors. Here we identify factors disposing towards accurate estimation of theta by simulation of populations regulated according to the theta-logistic model. Factors investigated were measurement error, environmental perturbation and length of time series. Large measurement errors bias estimates of theta towards zero. Where estimated theta is close to zero, the estimated annual return rate may help resolve whether this is due to bias. Environmental perturbations help yield unbiased estimates of theta. Where environmental perturbations are large, estimates of theta are likely to be reliable even when measurement errors are also large. By contrast where the environment is relatively constant, unbiased estimates of theta can only be obtained if populations are counted precisely Our results have practical conclusions for the design of long-term population surveys. Estimation of the precision of population counts would be valuable, and could be achieved in practice by repeating counts in at least some years. Increasing the length of time series beyond ten or 20 years yields only small benefits. if populations are measured with appropriate accuracy, given the level of environmental perturbation, unbiased estimates can be obtained from relatively short censuses. These conclusions are optimistic for estimation of theta. (C) 2008 Elsevier B.V All rights reserved.
Resumo:
The paper considers meta-analysis of diagnostic studies that use a continuous Score for classification of study participants into healthy, or diseased groups. Classification is often done on the basis of a threshold or cut-off value, which might vary between Studies. Consequently, conventional meta-analysis methodology focusing solely on separate analysis of sensitivity and specificity might he confounded by a potentially unknown variation of the cut-off Value. To cope with this phenomena it is suggested to use, instead an overall estimate of the misclassification error previously suggested and used as Youden's index and; furthermore, it is argued that this index is less prone to between-study variation of cut-off values. A simple Mantel-Haenszel estimator as a summary measure of the overall misclassification error is suggested, which adjusts for a potential study effect. The measure of the misclassification error based on Youden's index is advantageous in that it easily allows an extension to a likelihood approach, which is then able to cope with unobserved heterogeneity via a nonparametric mixture model. All methods are illustrated at hand of an example on a diagnostic meta-analysis on duplex doppler ultrasound, with angiography as the standard for stroke prevention.
Resumo:
Graphical tracking is a technique for crop scheduling where the actual plant state is plotted against an ideal target curve which encapsulates all crop and environmental characteristics. Management decisions are made on the basis of the position of the actual crop against the ideal position. Due to the simplicity of the approach it is possible for graphical tracks to be developed on site without the requirement for controlled experimentation. Growth models and graphical tracks are discussed, and an implementation of the Richards curve for graphical tracking described. In many cases, the more intuitively desirable growth models perform sub-optimally due to problems with the specification of starting conditions, environmental factors outside the scope of the original model and the introduction of new cultivars. Accurate specification for a biological model requires detailed and usually costly study, and as such is not adaptable to a changing cultivar range and changing cultivation techniques. Fitting of a new graphical track for a new cultivar can be conducted on site and improved over subsequent seasons. Graphical tracking emphasises the current position relative to the objective, and as such does not require the time consuming or system specific input of an environmental history, although it does require detailed crop measurement. The approach is flexible and could be applied to a variety of specification metrics, with digital imaging providing a route for added value. For decision making regarding crop manipulation from the observed current state, there is a role for simple predictive modelling over the short term to indicate the short term consequences of crop manipulation.
Resumo:
1. Jerdon's courser Rhinoptilus bitorquatus is a nocturnally active cursorial bird that is only known to occur in a small area of scrub jungle in Andhra Pradesh, India, and is listed as critically endangered by the IUCN. Information on its habitat requirements is needed urgently to underpin conservation measures. We quantified the habitat features that correlated with the use of different areas of scrub jungle by Jerdon's coursers, and developed a model to map potentially suitable habitat over large areas from satellite imagery and facilitate the design of surveys of Jerdon's courser distribution. 2. We used 11 arrays of 5-m long tracking strips consisting of smoothed fine soil to detect the footprints of Jerdon's coursers, and measured tracking rates (tracking events per strip night). We counted the number of bushes and trees, and described other attributes of vegetation and substrate in a 10-m square plot centred on each strip. We obtained reflectance data from Landsat 7 satellite imagery for the pixel within which each strip lay. 3. We used logistic regression models to describe the relationship between tracking rate by Jerdon's coursers and characteristics of the habitat around the strips, using ground-based survey data and satellite imagery. 4. Jerdon's coursers were most likely to occur where the density of large (>2 m tall) bushes was in the range 300-700 ha(-1) and where the density of smaller bushes was less than 1000 ha(-1). This habitat was detectable using satellite imagery. 5. Synthesis and applications. The occurrence of Jerdon's courser is strongly correlated with the density of bushes and trees, and is in turn affected by grazing with domestic livestock, woodcutting and mechanical clearance of bushes to create pasture, orchards and farmland. It is likely that there is an optimal level of grazing and woodcutting that would maintain or create suitable conditions for the species. Knowledge of the species' distribution is incomplete and there is considerable pressure from human use of apparently suitable habitats. Hence, distribution mapping is a high conservation priority. A two-step procedure is proposed, involving the use of ground surveys of bush density to calibrate satellite image-based mapping of potential habitat. These maps could then be used to select priority areas for Jerdon's courser surveys. The use of tracking strips to study habitat selection and distribution has potential in studies of other scarce and secretive species.
Improved fluorescent proteins for single-molecule research in molecular tracking and co-localization
Resumo:
Three promising variants of autofluorescent proteins have been analyzed photophysically for their proposed use in single-molecule microscopy studies in living cells to compare their superiority to other fluorescent proteins previously reported regarding the number of photons emitted. The first variant under investigation the F46L mutant of eYFP has a 10% greater photon emission rate and > 50% slower photobleaching rate on average than the standard eYFP fluorophore. The monomeric red fluorescent protein (mRFP) has a fivefold lower photon emission rate, likely due to the monomeric content, and also a tenfold faster photobleaching rate than the DsRed fluorescent protein. In contrast, the previously reported eqfp611 has a 50% lower emission rate yet photobleaches more than a factor 2 slowly. We conclude that the F46L YFP and the eqfp611 are superior new options for single molecule imaging and tracking studies in living cells. Studies were also performed on the effects of forced quenching of multiple fluorescent proteins in sub-micrometer regions that would show the effects of dimerization at low concentration levels of fluorescent proteins and also indicate corrections to stoichiometry patterns with fluorescent proteins previously in print. We also introduce properties at the single molecule level of new FRET pairs with combinations of fluorescent proteins and artificial fluorophores.
Resumo:
The convergence speed of the standard Least Mean Square adaptive array may be degraded in mobile communication environments. Different conventional variable step size LMS algorithms were proposed to enhance the convergence speed while maintaining low steady state error. In this paper, a new variable step LMS algorithm, using the accumulated instantaneous error concept is proposed. In the proposed algorithm, the accumulated instantaneous error is used to update the step size parameter of standard LMS is varied. Simulation results show that the proposed algorithm is simpler and yields better performance than conventional variable step LMS.
Resumo:
The main activity carried out by the geophysicist when interpreting seismic data, in terms of both importance and time spent is tracking (or picking) seismic events. in practice, this activity turns out to be rather challenging, particularly when the targeted event is interrupted by discontinuities such as geological faults or exhibits lateral changes in seismic character. In recent years, several automated schemes, known as auto-trackers, have been developed to assist the interpreter in this tedious and time-consuming task. The automatic tracking tool available in modem interpretation software packages often employs artificial neural networks (ANN's) to identify seismic picks belonging to target events through a pattern recognition process. The ability of ANNs to track horizons across discontinuities largely depends on how reliably data patterns characterise these horizons. While seismic attributes are commonly used to characterise amplitude peaks forming a seismic horizon, some researchers in the field claim that inherent seismic information is lost in the attribute extraction process and advocate instead the use of raw data (amplitude samples). This paper investigates the performance of ANNs using either characterisation methods, and demonstrates how the complementarity of both seismic attributes and raw data can be exploited in conjunction with other geological information in a fuzzy inference system (FIS) to achieve an enhanced auto-tracking performance.
Resumo:
A technique is presented for locating and tracking objects in cluttered environments. Agents are randomly distributed across the image, and subsequently grouped around targets. Each agent uses a weightless neural network and a histogram intersection technique to score its location. The system has been used to locate and track a head in 320x240 resolution video at up to 15fps.
Resumo:
Exact error estimates for evaluating multi-dimensional integrals are considered. An estimate is called exact if the rates of convergence for the low- and upper-bound estimate coincide. The algorithm with such an exact rate is called optimal. Such an algorithm has an unimprovable rate of convergence. The problem of existing exact estimates and optimal algorithms is discussed for some functional spaces that define the regularity of the integrand. Important for practical computations data classes are considered: classes of functions with bounded derivatives and Holder type conditions. The aim of the paper is to analyze the performance of two optimal classes of algorithms: deterministic and randomized for computing multidimensional integrals. It is also shown how the smoothness of the integrand can be exploited to construct better randomized algorithms.
Resumo:
Feature tracking is a key step in the derivation of Atmospheric Motion Vectors (AMV). Most operational derivation processes use some template matching technique, such as Euclidean distance or cross-correlation, for the tracking step. As this step is very expensive computationally, often shortrange forecasts generated by Numerical Weather Prediction (NWP) systems are used to reduce the search area. Alternatives, such as optical flow methods, have been explored, with the aim of improving the number and quality of the vectors generated and the computational efficiency of the process. This paper will present the research carried out to apply Stochastic Diffusion Search, a generic search technique in the Swarm Intelligence family, to feature tracking in the context of AMV derivation. The method will be described, and we will present initial results, with Euclidean distance as reference.