948 resultados para Tissue function
Resumo:
This manuscript took a 'top down' approach to understanding survival of inhabitant cells in the ecosystem bone, working from higher to lower length and time scales through the hierarchical ecosystem of bone. Our working hypothesis is that nature “engineered” the skeleton using a 'bottom up' approach,where mechanical properties of cells emerge from their adaptation to their local me-chanical milieu. Cell aggregation and formation of higher order anisotropic struc- ture results in emergent architectures through cell differentiation and extracellular matrix secretion. These emergent properties, including mechanical properties and architecture, result in mechanical adaptation at length scales and longer time scales which are most relevant for the survival of the vertebrate organism [Knothe Tate and von Recum 2009]. We are currently using insights from this approach to har-ness nature’s regeneration potential and to engineer novel mechanoactive materials [Knothe Tate et al. 2007, Knothe Tate et al. 2009]. In addition to potential applications of these exciting insights, these studies may provide important clues to evolution and development of vertebrate animals. For instance, one might ask why mesenchymal stem cells condense at all? There is a putative advantage to self-assembly and cooperation, but this advantage is somewhat outweighed by the need for infrastructural complexity (e.g., circulatory systems comprised of specific differentiated cell types which in turn form conduits and pumps to overcome limitations of mass transport via diffusion, for example; dif-fusion is untenable for multicellular organisms larger than 250 microns in diameter. A better question might be: Why do cells build skeletal tissue? Once cooperatingcells in tissues begin to deplete local sources of food in their aquatic environment, those that have evolved a means to locomote likely have an evolutionary advantage. Once the environment becomes less aquarian and more terrestrial, self-assembled organisms with the ability to move on land might have conferred evolutionary ad-vantages as well. So did the cytoskeleton evolve several length scales, enabling the emergence of skeletal architecture for vertebrate animals? Did the evolutionary advantage of motility over noncompliant terrestrial substrates (walking on land) favor adaptations including emergence of intracellular architecture (changes in the cytoskeleton and upregulation of structural protein manufacture), inter-cellular con- densation, mineralization of tissues, and emergence of higher order architectures?How far does evolutionary Darwinism extend and how can we exploit this knowl- edge to engineer smart materials and architectures on Earth and new, exploratory environments?[Knothe Tate et al. 2008]. We are limited only by our ability to imagine. Ultimately, we aim to understand nature, mimic nature, guide nature and/or exploit nature’s engineering paradigms without engineer-ing ourselves out of existence.
Resumo:
Most research on numerical development in children is behavioural, focusing on accuracy and response time in different problem formats. However, Temple and Posner (1998) used ERPs and the numerical distance task with 5-year-olds to show that the development of numerical representations is difficult to disentangle from the development of the executive components of response organization and execution. Here we use the numerical Stroop paradigm (NSP) and ERPs to study possible executive interference in numerical processing tasks in 6–8-year-old children. In the NSP, the numerical magnitude of the digits is task-relevant and the physical size of the digits is task-irrelevant. We show that younger children are highly susceptible to interference from irrelevant physical information such as digit size, but that access to the numerical representation is almost as fast in young children as in adults. We argue that the developmental trajectories for executive function and numerical processing may act together to determine numerical development in young children.
Resumo:
The purpose of this research is to report preliminary empirical evidence regarding the association between common physical performance measures and health-related quality of life (HRQoL) of hospitalized older adults recovering from illness and injury. Frequently, these patients do not return to premorbid levels of independence and physical ability. Rehabilitation for this population often focuses on improving physical functioning and mobility with the intention of maximizing their HRQoL for discharge and thereafter. For this reason, longitudinal use of physical performance measures as an indicator of improvement in physical functioning (and thus HRQoL) is common. Although this is a logical approach, there have been mixed results from previous investigations into the association between common measures of physical function and HRQoL amongst other adult patient populations.1,2 There has been no previous investigation reporting the association between HRQoL and a variety of common physical performance measures in hospitalized older adults.
Resumo:
Bone is a complex, living, constantly changing tissue. Bone consists of cancellous and cortical bone. This architecture allows the skeleton to perform its essential mechanical functions.
Resumo:
Recent studies have demonstrated that IGF-I associates with VN through IGF-binding proteins (IGFBP) which in turn modulate IGF-stimulated biological functions such as cell proliferation, attachment and migration. Since IGFs play important roles in transformation and progression of breast tumours, we aimed to describe the effects of IGF-I:IGFBP:VN complexes on breast cell function and to dissect mechanisms underlying these responses. In this study we demonstrate that substrate-bound IGF-I:IGFBP:VN complexes are potent stimulators of MCF-7 breast cell survival, which is mediated by a transient activation of ERK/MAPK and sustained activation of PI3-K/AKT pathways. Furthermore, use of pharmacological inhibitors of the MAPK and PI3-K pathways confirms that both pathways are involved in IGF-I:IGFBP:VN complex-mediated increased cell survival. Microarray analysis of cells stimulated to migrate in response to IGF-I:IGFBP:VN complexes identified differential expression of genes with previously reported roles in migration, invasion and survival (Ephrin-B2, Sharp-2, Tissue-factor, Stratifin, PAI-1, IRS-1). These changes were not detected when the IGF-I analogue (\[L24]\[A31]-IGF-I), which fails to bind to the IGF-I receptor, was substituted; confirming the IGF-I-dependent differential expression of genes associated with enhanced cell migration. Taken together, these studies have established that IGF-I:IGFBP:VN complexes enhance breast cell migration and survival, processes central to facilitating metastasis. This study highlights the interdependence of ECM and growth factor interactions in biological functions critical for metastasis and identifies potential novel therapeutic targets directed at preventing breast cancer progression.
Resumo:
Large mysticete whales represent a unique challenge for chemical risk assessment. Few epidemiological investigations are possible due to the low incidence of adult stranding events. Similarly their often extreme life-history adaptations of prolonged migration and fasting challenge exposure assumptions. Molecular biomarkers offer the potential to complement information yielded through tissue chemical analysis, as well as providing evidence of a molecular response to chemical exposure. In this study we confirm the presence of cytochrome P450 reductase (CPR) and cytochrome P450 isoenzyme 1A1 (CYP1A1) in epidermal tissue of southern hemisphere humpback whales (Megaptera novaeangliae). The detection of CYP1A1 in the integument of the humpback whale affords the opportunity for further quantitative non-destructive investigations of enzyme activity as a function of chemical stress.
Resumo:
Chlamydia trachomatis is an obligate intracellular bacterial pathogen that infects the genital and ocular mucosa of humans, causing infections that can lead to pelvic inflammatory disease, infertility, and blinding trachoma. C. pneumoniae is a respiratory pathogen that is the cause of 12–15% of community-acquired pneumonia. Both chlamydial species were believed to be restricted to the epithelia of the genital, ocular, and respiratory mucosa; however, increasing evidence suggests that both these pathogens can be isolated from peripheral blood of both healthy individuals and patients with inflammatory conditions such as coronary artery disease and asthma. Chlamydia can also be isolated from brain tissues of patients with degenerative neurological disorders such as Alzheimer’s disease and multiple sclerosis, and also from certain lymphomas. An increasing number of in vitro studies suggest that some chlamydial species can infect immune cells, at least at low levels. These infections may alter immune cell function in a way that promotes chlamydial persistence in the host and contributes to the progression of several chronic inflammatory diseases. In this paper, we review the evidence for the growth of Chlamydia in immune cells, particularly monocytes/macrophages and dendritic cells, and describe how infection may affect the function of these cells.
Resumo:
DNA exists predominantly in a duplex form that is preserved via specific base pairing. This base pairing affords a considerable degree of protection against chemical or physical damage and preserves coding potential. However, there are many situations, e.g. during DNA damage and programmed cellular processes such as DNA replication and transcription, in which the DNA duplex is separated into two singlestranded DNA (ssDNA) strands. This ssDNA is vulnerable to attack by nucleases, binding by inappropriate proteins and chemical attack. It is very important to control the generation of ssDNA and protect it when it forms, and for this reason all cellular organisms and many viruses encode a ssDNA binding protein (SSB). All known SSBs use an oligosaccharide/oligonucleotide binding (OB)-fold domain for DNA binding. SSBs have multiple roles in binding and sequestering ssDNA, detecting DNA damage, stimulating strand-exchange proteins and helicases, and mediation of protein–protein interactions. Recently two additional human SSBs have been identified that are more closely related to bacterial and archaeal SSBs. Prior to this it was believed that replication protein A, RPA, was the only human equivalent of bacterial SSB. RPA is thought to be required for most aspects of DNA metabolism including DNA replication, recombination and repair. This review will discuss in further detail the biological pathways in which human SSBs function.
Resumo:
This paper presents a method of voice activity detection (VAD) for high noise scenarios, using a noise robust voiced speech detection feature. The developed method is based on the fusion of two systems. The first system utilises the maximum peak of the normalised time-domain autocorrelation function (MaxPeak). The second zone system uses a novel combination of cross-correlation and zero-crossing rate of the normalised autocorrelation to approximate a measure of signal pitch and periodicity (CrossCorr) that is hypothesised to be noise robust. The score outputs by the two systems are then merged using weighted sum fusion to create the proposed autocorrelation zero-crossing rate (AZR) VAD. Accuracy of AZR was compared to state of the art and standardised VAD methods and was shown to outperform the best performing system with an average relative improvement of 24.8% in half-total error rate (HTER) on the QUT-NOISE-TIMIT database created using real recordings from high-noise environments.
Resumo:
Cell based therapies for bone regeneration are an exciting emerging technology, but the availability of osteogenic cells is limited and an ideal cell source has not been identified. Amniotic fluid-derived stem (AFS) cells and bone-marrow derived mesenchymal stem cells (MSCs) were compared to determine their osteogenic differentiation capacity in both 2D and 3D environments. In 2D culture, the AFS cells produced more mineralized matrix but delayed peaks in osteogenic markers. Cells were also cultured on 3D scaffolds constructed of poly-e-caprolactone for 15 weeks. MSCs differentiated more quickly than AFS cells on 3D scaffolds, but mineralized matrix production slowed considerably after 5 weeks. In contrast, the rate of AFS cell mineralization continued to increase out to 15 weeks, at which time AFS constructs contained 5-fold more mineralized matrix than MSC constructs. Therefore, cell source should be taken into consideration when used for cell therapy, as the MSCs would be a good choice for immediate matrix production, but the AFS cells would continue robust mineralization for an extended period of time. This study demonstrates that stem cell source can dramatically influence the magnitude and rate of osteogenic differentiation in vitro.
Resumo:
Calcium Phosphate ceramic has been widely used in bone tissue engineering due to its excellent biocompatibility and biodegradability. However, low mechanical properties and biodegradability limit their potential applications. In this project, hydroxyapatite (HA) and calcium phosphate bioglass were used to produce porous tri-calcium phosphate (TCP) bio-ceramic scaffolds. It was found that porous TCP bioceramic could be obtained when 20wt percent bioglass addition and sintered in 1400 degrees celsius for 3 h. Significantly higher compressive strength (9.98 MPa) was achieved in the scaffolds as compared to those produced from tCP power (<3 MPa). The biocompatibility of the scaffold was also estimated.
Resumo:
Porous yttria-stabilized zirconia (YSZ) has been regarded as a potential candidate for bone substitute due to its high mechanical strength. However, porous YSZ is biologically inert to bone tissue. It is therefore necessary to introduce bioactive coatings onto the walls of the porous structures to enhance its bioactivity. In this study, porous YSZ scaffolds were prepared using a replication technique and then coated with mesoporous bioglass due to its excellent bioactivity. The microstructures were examined using scanning electron microscopy and the mechanical strength was evaluated via compression test. The biocompatibility and bioactivity were also evaluated using bone marrow stromal cell (BMSC) proliferation test and simulated body fluid test.
Resumo:
In the past 20 years, mesoporous materials have been attracted great attention due to their significant feature of large surface area, ordered mesoporous structure, tunable pore size and volume, and well-defined surface property. They have many potential applications, such as catalysis, adsorption/separation, biomedicine, etc. [1]. Recently, the studies of the applications of mesoporous materials have been expanded into the field of biomaterials science. A new class of bioactive glass, referred to as mesoporous bioactive glass (MBG), was first developed in 2004. This material has a highly ordered mesopore channel structure with a pore size ranging from 5–20 nm [1]. Compared to non-mesopore bioactive glass (BG), MBG possesses a more optimal surface area, pore volume and improved in vitro apatite mineralization in simulated body fluids [1,2]. Vallet-Regí et al. has systematically investigated the in vitro apatite formation of different types of mesoporous materials, and they demonstrated that an apatite-like layer can be formed on the surfaces of Mobil Composition of Matters (MCM)-48, hexagonal mesoporous silica (SBA-15), phosphorous-doped MCM-41, bioglass-containing MCM-41 and ordered mesoporous MBG, allowing their use in biomedical engineering for tissue regeneration [2-4]. Chang et al. has found that MBG particles can be used for a bioactive drug-delivery system [5,6]. Our study has shown that MBG powders, when incorporated into a poly (lactide-co-glycolide) (PLGA) film, significantly enhance the apatite-mineralization ability and cell response of PLGA films. compared to BG [7]. These studies suggest that MBG is a very promising bioactive material with respect to bone regeneration. It is known that for bone defect repair, tissue engineering represents an optional method by creating three-dimensional (3D) porous scaffolds which will have more advantages than powders or granules as 3D scaffolds will provide an interconnected macroporous network to allow cell migration, nutrient delivery, bone ingrowth, and eventually vascularization [8]. For this reason, we try to apply MBG for bone tissue engineering by developing MBG scaffolds. However, one of the main disadvantages of MBG scaffolds is their low mechanical strength and high brittleness; the other issue is that they have very quick degradation, which leads to an unstable surface for bone cell growth limiting their applications. Silk fibroin, as a new family of native biomaterials, has been widely studied for bone and cartilage repair applications in the form of pure silk or its composite scaffolds [9-14]. Compared to traditional synthetic polymer materials, such as PLGA and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), the chief advantage of silk fibroin is its water-soluble nature, which eliminates the need for organic solvents, that tend to be highly cytotoxic in the process of scaffold preparation [15]. Other advantages of silk scaffolds are their excellent mechanical properties, controllable biodegradability and cytocompatibility [15-17]. However, for the purposes of bone tissue engineering, the osteoconductivity of pure silk scaffolds is suboptimal. It is expected that combining MBG with silk to produce MBG/silk composite scaffolds would greatly improve their physiochemical and osteogenic properties for bone tissue engineering application. Therefore, in this chapter, we will introduce the research development of MBG/silk scaffolds for bone tissue engineering.
Resumo:
Objectives: The periosteum plays an indispensable role in both bone formation and bone defect healing. The aim of this project is to produce tissue engineered periosteum for bone defect treatment. Methods: In this study we constructed an artificial in vitro periosteum by incorporating osteogenic differentiated bone marrow stromal cells (BMSCs) and cobalt chloride (CoCl2)-treated BMSCs. The engineered periostea were implanted both subcutaneously and into skull bone defects in SCID mice to investigate ectopic and orthotopic osteogenesis and vascularisation. After two weeks in subcutaneous and four weeks in bone defect areas, the implanted constructs were assessed for ectopic and orthotopic osteogenesis and vascularisation by micro-CT, histomorphometrical and immunohistochemical methods. Results: The results showed that CoCl2 pre-treated BMSCs induced higher degree of vascularisation and enhanced osteogenesis within the implants in both ectopic and orthotopic areas. Conclusion: This study provided a novel approach using BMSCs sourced from the same patient for both osteogenic and pro-angiogenic purposes in constructing tissue engineered periosteum to enhance vascularized osteogenesis.
Resumo:
and non-union of bony fractures has been proposed since 1966, little has been known about the effect of HBOT on bone marrow stem cells (BMSC). The aim of this study is to investigate the effect of HBO treatment on osteogenetic differentiation of BMSC and potential application in bone tissue engineering. Adhesive stromal cells harvested from bone marrow were characterized by mesenchymal differentiation potential, cell surface markers and their proliferation capacity. Mesenchymal stem cells, which demonstrated osteogenic, chondrogenic and adipogenic differentiation potential and expressed positively for CD 29, CD 44, CD 73, CD 90, CD 105, CD 166 and negatively for CD34 and CD 45, were selected and treated in a laboratory-scale HBO chamber using different oxygen pressures and exposure times. No obvious effect of HBO treatment on BMSC proliferation was noticed. However, cytotoxic effects of HBO were considerably less pronounced when cells were cultured in medium supplemented with 10% FBS in comparison to medium supplemented with 2% FCS, as was evaluated by WST-1 assay. Under HBO treatment, bone nodules were formed in three days, which was clearly revealed by Von Kossa staining. In contrasts, without HBO treatment, bone nodules were not detected until 9-12 days using the same inducing culture media. Calcium deposition was also significantly increased after three days of HBO treatments compared to no HBO treatment. In addition it was also found that oxygen played a direct role in the enhancement of BMSC osteogenic differentiation, which was independent of the effect of air pressure.