973 resultados para Tissue Inhibitor of Metalloproteinases
Resumo:
The aim of this study was to analyze the buccal tissue responses of Wistar rats to 2% chlorhexidine solution, calcium hydroxide and the association of both products. For this purpose, 30 specimens were randomly implanted in the filtrum of the four upper and lower hemiarches with a polyethylene tube containing one of the following substances: 2% chlorhexidine solution, calcium hydroxide and 2% chlorhexidine solution (test groups); calcium hydroxide and distilled water and distilled water (control groups). Ten rats each were distributed according to time interval of evaluation at 7, 15 and 30 days. The histological sections were stained with Harris hematoxylin and eosin. Analysis was per-formed with an optical microscope at x100, x200 and x400 magnifications by an expert examiner blinded to the materials. The sections were classified by scores attributed to inflammatory events and by a ranking determined according to the severity of the inflammation. The results of the inflammatory events and severity ranking were submitted to the Kruskal-Wallis test at a 0.05 level of significance. No statistically significant difference occurred among the tested materials; however, all materials showed a decreased of severity with respect to longer time intervals.
Resumo:
Amicarbazone is a new triazolinone herbicide with a broad spectrum of weed control. The phenotypic responses of sensitive plants exposed to amicarbazone include chlorosis, Stunted growth, tissue necrosis, and death. Its efficacy as both a foliar- and root-applied herbicide suggests that absorption and translocation of this compound is very rapid. This new herbicide is a potent inhibitor of photosynthetic electron transport, inducing chlorophyll fluorescence and interrupting oxygen evolution ostensibly via binding to the Q(B) domain of photosystem II (PSII) in a manner similar to the triazines and the triazinones classes of herbicides. As a result, its efficacy is susceptible to the most common form of resistance to PSII inhibitors. Nonetheless, amicarbazone has a good selectivity profile and is a more potent herbicide than atrazine, which enables its use at lower rates than those of traditional photosynthetic inhibitors.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A study of the subcutaneous connective tissue response of 24 white rats to three different formulations of gutta-percha was undertaken. The prepared specimens were examined under the light microscope after intervals of 7, 21, 60 and 120 days. The results showed identical tissue responses after the initial period of 7 days. However, after 120 days the gutta-percha supplied with the Ultrafil system presented mature granulation tissue with neither oedema nor vascular congestion, in contrast to the responses observed with the McSpadden and Obtura formulations.
Resumo:
Aims The macrophage migration inhibitory factor (MIF) is an intracellular inhibitor of the central nervous system actions of angiotensin II on blood pressure. Considering that angiotensin II actions at the nucleus of the solitary tract are important for the maintenance of hypertension in spontaneously hypertensive rats (SHRs), we tested if increased MIF expression in the nucleus of the solitary tract of SHR alters the baseline high blood pressure in these rats.Methods and resultsEight-week-old SHRs or normotensive rats were microinjected with the vector AAV2-CBA-MIF into the nucleus of the solitary tract, resulting in MIF expression predominantly in neurons. Rats also underwent recordings of the mean arterial blood pressure (MAP) and heart rate (via telemetry devices implanted in the abdominal aorta), cardiac- and baroreflex function. Injections of AAV2-CBA-MIF into the nucleus of the solitary tract of SHRs produced significant decreases in the MAP, ranging from 10 to 20 mmHg, compared with age-matched SHRs that had received identical microinjections of the control vector AAV2-CBA-eGFP. This lowered MAP in SHRs was maintained through the end of the experiment at 31 days, and was associated with an improvement in baroreflex function to values observed in normotensive rats. In contrast to SHRs, similar increased MIF expression in the nucleus of the solitary tract of normotensive rats produced no changes in baseline MAP and baroreflex function.ConclusionThese results indicate that an increased expression of MIF within the nucleus of the solitary tract neurons of SHRs lowers blood pressure and restores baroreflex function. © 2012 Published on behalf of the European Society of Cardiology. All rights reserved.
Resumo:
High systolic blood pressure caused by endothelial dysfunction is a comorbidity of metabolic syndrome that is mediated by local inflammatory signals. Insulin-induced vasorelaxation due to endothelial nitric oxide synthase (eNOS) activation is highly dependent on the activation of the upstream insulin-stimulated serine/threonine kinase (AKT) and is severely impaired in obese, hypertensive rodents and humans. Neutralisation of circulating tumor necrosis factor-α (TNFα) with infliximab improves glucose homeostasis, but the consequences of this pharmacological strategy on systolic blood pressure and eNOS activation are unknown. To address this issue, we assessed the temporal changes in the systolic pressure of spontaneously hypertensive rats (SHR) treated with infliximab. We also assessed the activation of critical proteins that mediate insulin activity and TNFα-mediated insulin resistance in the aorta and cardiac left ventricle. Our data demonstrate that infliximab prevents the upregulation of both systolic pressure and left ventricle hypertrophy in SHR. These effects paralleled an increase in AKT/eNOS phosphorylation and a reduction in the phosphorylation of inhibitor of nuclear factor-κB (Iκβ) and c-Jun N-terminal kinase (JNK) in the aorta. Overall, our study revealed the cardiovascular benefits of infliximab in SHR. In addition, the present findings further suggested that the reduction of systolic pressure and left ventricle hypertrophy by infliximab are secondary effects to the reduction of endothelial inflammation and the recovery of AKT/eNOS pathway activation. © 2012 Elsevier B.V.
Resumo:
Introduction: The aim of this study is to evaluate the serum activity of metalloproteinases (MMPs) -2 and -9 as predictors of pressure ulcer (PU), gait status and mortality 6 months after hip fracture. Methods: Eighty-seven patients over the age of 65 admitted to the orthopedic unit from January to December 2010 with hip fracture were prospectively evaluated. Upon admission, patient demographic information, including age, gender and concomitant diseases, was recorded. Blood samples were taken for analysis of MMP -2 and -9 activity by gel zymography and for biochemical examination within the first 72 hours of the patient's admission, after clinical stabilization. The fracture pattern (neck, trochanteric or subtrochanteric), time from admission to surgery, surgery duration and length of hospital stay were also recorded. Results: Two patients were excluded due to the presence of pathological fractures (related to cancer), and three patients were excluded due to the presence of PU before admission. Eighty-two patients, with a mean age of 80.4 ± 7.3 years, were included in the analysis. Among these patients, 75.6% were female, 59.8% had PU, and 13.4% died 6 months after hip fracture. All patients underwent hip fracture repair. In a univariate analysis, there were no differences in serum MMP activity between hip fracture patients with or without PU. In addition, the multiple logistic regression analysis models, which were adjusted by age, gender, length of hospital stay and C-reactive protein, showed that the pro-MMP-9 complexed with neutrophil gelatinase-associated lipocalin form (130 kDa) was associated with gait status recovery 6 months after hip fracture. Conclusions: In conclusion, serum pro-MMP-9 is a predictor of gait status recovery 6 months after hip fracture. © 2013 Gumieiro et al.
Resumo:
Apocynin is the most employed inhibitor of NADPH oxidase (NOX), a multienzymatic complex capable of catalyzing the one-electron reduction of molecular oxygen to the superoxide anion. Despite controversies about its selectivity, apocynin has been used as one of the most promising drugs in experimental models of inflammatory and neurodegenerative diseases. Here, we aimed to study the chemical and biophysical properties of apocynin. The oxidation potential was determined by cyclic voltammetry (Epa = 0.76V), the hydrophobicity index was calculated (logP = 0.83) and the molar absorption coefficient was determined (ε275nm = 1.1 × 104 M-1 cm-1). Apocynin was a weak free radical scavenger (as measured using the DPPH, peroxyl radical and nitric oxide assays) when compared to protocatechuic acid, used here as a reference antioxidant. On the other hand, apocynin was more effective than protocatechuic acid as scavenger of the non-radical species hypochlorous acid. Apocynin reacted promptly with the non-radical reactive species H2O2 only in the presence of peroxidase. This finding is relevant, since it represents a new pathway for depleting H2O2 in cellular experimental models, besides the direct inhibition of NADPH oxidase. This could be relevant for its application as an inhibitor of NOX4, since this isoform produces H 2O2 and not superoxide anion. The binding parameters calculated by fluorescence quenching showed that apocynin binds to human serum albumin (HSA) with a binding affinity of 2.19 × 104 M -1. The association did not alter the secondary and tertiary structure of HSA, as verified by synchronous fluorescence and circular dichroism. The displacement of fluorescent probes suggested that apocynin binds to site I and site II of HSA. Considering the current biomedical applications of this phytochemical, the dissemination of these chemical and biophysical properties can be very helpful for scientists and physicians interested in the use of apocynin.
Resumo:
In recent years, several studies have shown that concentrations of trace elements are altered in neoplastic breast tissues. However, the microenvironment and metabolic changes caused by tumors are complex and still not completely understood. Under this aspect, the combination of different techniques to investigate the role of trace elements in promoting and/or maintaining a tumor is interesting once the combination of information obtained by analytical techniques and immunohistochemical assays, associated with clinicopathological data, may allow a better metabolic understanding of trace elements in breast cancer. In this work, the role of the trace elements Ca, Fe, Cu and Zn in neoplastic breast tissues was investigated by X-ray fluorescence (XRF) techniques and immunohistochemical assays. We determined concentrations of Ca, Fe, Cu and Zn in normal and neoplastic breast tissues using energy dispersive XRF, and these values were used to set the positive or negative expression of elements in normal and neoplastic tissues. These expressions were correlated with the spatial distributions of trace elements (evaluated by micro-XRF) and with immunoexpression of matrix metalloproteinases (MMPs), tissue inhibitors of MMPs and vascular endothelial growth factor. The results revealed that the expression of the trace elements Fe, Cu and vascular endothelial growth factor are related, indicating that higher levels of these elements can be associated with the angiogenic process in breast cancer. Also, associations between Ca, Zn and MMPs expression have been observed, possibly because of the fact that both metals are present in these proteins. © 2013 John Wiley & Sons, Ltd.
Resumo:
Cytotoxicity and subcutaneous tissue reaction of innovative blends composed by polyvinylidene fluoride and polyvinylidene fluoride-trifluoroethylene associated with natural polymers (natural rubber and native starch) forming membranes were evaluated, aiming its applications associated with bone regeneration. Cytotoxicity was evaluated in mouse fibroblasts culture cells (NIH3T3) using trypan blue staining. Tissue response was in vivo evaluated by subcutaneous implantation of materials in rats, taking into account the presence of necrosis and connective tissue capsule around implanted materials after 7, 14, 21, 28, 35, 60, and 100 days of surgery. The pattern of inflammation was evaluated by histomorphometry of the inflammatory cells. Chemical and morphological changes of implanted materials after 60 and 100 days were evaluated by Fourier transform infrared (FTIR) absorption spectroscopy and scanning electron microscopy (SEM) images. Cytotoxicity tests indicated a good tolerance of the cells to the biomaterial. The in vivo tissue response of all studied materials showed normal inflammatory pattern, characterized by a reduction of polymorphonuclear leukocytes and an increase in mononuclear leukocytes over the time (p < 0.05 Kruskal-Wallis). On day 60, microscopic analysis showed regression of the chronic inflammatory process around all materials. FTIR showed no changes in chemical composition of materials due to implantation, whereas SEM demonstrated the delivery of starch in the medium. Therefore, the results of the tests performed in vitro and in vivo show that the innovative blends can further be used as biomaterials. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 101B: 1284-1293, 2013. Copyright © 2013 Wiley Periodicals, Inc.
Resumo:
“Um desidro-rotenóide produzido por cultura de calos e por raízes de plantas silvestres de Boerhaavia coccinea”. Cultura de calos foram estabelecidos de folhas e galhos finos de plântula de B. coccinea produzida in vitro e analisada para isofl avonóide. A quantificação do 6,9,11-triidroxi-6a,12a-desidro-rotenóide isolado das raízes de B. coccinea P Miller, coletada em seu habitat natural, e do mesmo rotenóide produzido na cultura de células estão descritos neste artigo. A análise rotineira em CLAE mostrou que a cultura de calos produziu o mesmo isoflavonóide encontrado nas raízes da planta do campo. A quantidade do metabólito secundário produzido in vitro foi de 955.35
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Delayed lipoprotein clearance is associated with atherosclerosis. This study examined whether chronic intermittent hypoxia (CIH), a hallmark of obstructive sleep apnoea (OSA), can lead to hyperlipidaemia by inhibiting clearance of triglyceride rich lipoproteins (TRLP). Male C57BL/6J mice on high-cholesterol diet were exposed to 4 weeks of CIH or chronic intermittent air (control). FIO2 was decreased to 6.5 once per minute during the 12 h light phase in the CIH group. After the exposure, we measured fasting lipid profile. TRLP clearance was assessed by oral gavage of retinyl palmitate followed by serum retinyl esters (REs) measurements at 0, 1, 2, 4, 10, and 24 h. Activity of lipoprotein lipase (LpL), a key enzyme of lipoprotein clearance, and levels of angiopoietin-like protein 4 (Angptl4), a potent inhibitor of the LpL activity, were determined in the epididymal fat pads, skeletal muscles, and heart. Chronic intermittent hypoxia induced significant increases in levels of total cholesterol and triglycerides, which occurred in TRLP and LDL fractions (P 0.05 for each comparison). Compared with control mice, animals exposed to CIH showed increases in REs throughout first 10 h after oral gavage of retinyl palmitate (P 0.05), indicating that CIH inhibited TRLP clearance. CIH induced a 5-fold decrease in LpL activity (P 0.01) and an 80 increase in Angptl4 mRNA and protein levels in the epididymal fat, but not in the skeletal muscle or heart. CIH decreases TRLP clearance and inhibits LpL activity in adipose tissue, which may contribute to atherogenesis observed in OSA.