895 resultados para Tilted-time window model
Resumo:
We present a method to integrate environmental time series into stock assessment models and to test the significance of correlations between population processes and the environmental time series. Parameters that relate the environmental time series to population processes are included in the stock assessment model, and likelihood ratio tests are used to determine if the parameters improve the fit to the data significantly. Two approaches are considered to integrate the environmental relationship. In the environmental model, the population dynamics process (e.g. recruitment) is proportional to the environmental variable, whereas in the environmental model with process error it is proportional to the environmental variable, but the model allows an additional temporal variation (process error) constrained by a log-normal distribution. The methods are tested by using simulation analysis and compared to the traditional method of correlating model estimates with environmental variables outside the estimation procedure. In the traditional method, the estimates of recruitment were provided by a model that allowed the recruitment only to have a temporal variation constrained by a log-normal distribution. We illustrate the methods by applying them to test the statistical significance of the correlation between sea-surface temperature (SST) and recruitment to the snapper (Pagrus auratus) stock in the Hauraki Gulf–Bay of Plenty, New Zealand. Simulation analyses indicated that the integrated approach with additional process error is superior to the traditional method of correlating model estimates with environmental variables outside the estimation procedure. The results suggest that, for the snapper stock, recruitment is positively correlated with SST at the time of spawning.
Resumo:
An implementation of the inverse vector Jiles-Atherton model for the solution of non-linear hysteretic finite element problems is presented. The implementation applies the fixed point method with differential reluctivity values obtained from the Jiles-Atherton model. Differential reluctivities are usually computed using numerical differentiation, which is ill-posed and amplifies small perturbations causing large sudden increases or decreases of differential reluctivity values, which may cause numerical problems. A rule based algorithm for conditioning differential reluctivity values is presented. Unwanted perturbations on the computed differential reluctivity values are eliminated or reduced with the aim to guarantee convergence. Details of the algorithm are presented together with an evaluation of the algorithm by a numerical example. The algorithm is shown to guarantee convergence, although the rate of convergence depends on the choice of algorithm parameters. © 2011 IEEE.
Resumo:
A time-varying controllable fault-tolerant field associative memory model and the realization algorithms are proposed. On the one hand, this model simulates the time-dependent changeability character of the fault-tolerant field of human brain's associative memory. On the other hand, fault-tolerant fields of the memory samples of the model can be controlled, and we can design proper fault-tolerant fields for memory samples at different time according to the essentiality of memory samples. Moreover, the model has realized the nonlinear association of infinite value pattern from n dimension space to m dimension space. And the fault-tolerant fields of the memory samples are full of the whole real space R-n. The simulation shows that the model has the above characters and the speed of associative memory about the model is faster.
Resumo:
The present study reports an application of the searching combination moving window partial least squares (SCMWPLS) algorithm to the determination of ethenzamide and acetoaminophen in quaternary powdered samples by near infrared (NIR) spectroscopy. Another purpose of the study was to examine the instrumentation effects of spectral resolution and signal-to-noise ratio of the Buchi NIRLab N-200 FT-NIR spectrometer equipped with an InGaAs detector. The informative spectral intervals of NIR spectra of a series of quaternary powdered mixture samples were first located for ethenzamide and acetoaminophen by use of moving window partial least squares regression (MWPLSR). Then, these located spectral intervals were further optimised by SCMWPLS for subsequent partial least squares (PLS) model development. The improved results are attributed to both the less complex PLS models and to higher accuracy of predicted concentrations of ethenzamide and acetoaminophen in the optimised informative spectral intervals that are featured by NIR bands. At the same time, SCMWPLS is also demonstrated as a viable route for wavelength selection.
Resumo:
More than 22 000 folding kinetic simulations were performed to study the temperature dependence of the distribution of first passage time (FPT) for the folding of an all-atom Go-like model of the second beta-hairpin fragment of protein G. We find that the mean FPT (MFPT) for folding has a U (or V)-shaped dependence on the temperature with a minimum at a characteristic optimal folding temperature T-opt*. The optimal folding temperature T-opt* is located between the thermodynamic folding transition temperature and the solidification temperature based on the Lindemann criterion for the solid. Both the T-opt* and the MFPT decrease when the energy bias gap against nonnative contacts increases. The high-order moments are nearly constant when the temperature is higher than T-opt* and start to diverge when the temperature is lower than T-opt*. The distribution of FPT is close to a log-normal-like distribution at T* greater than or equal to T-opt*. At even lower temperatures, the distribution starts to develop long power-law-like tails, indicating the non-self-averaging intermittent behavior of the folding dynamics. It is demonstrated that the distribution of FPT can also be calculated reliably from the derivative of the fraction not folded (or fraction folded), a measurable quantity by routine ensemble-averaged experimental techniques at dilute protein concentrations.
Resumo:
This paper describes an algorithm for scheduling packets in real-time multimedia data streams. Common to these classes of data streams are service constraints in terms of bandwidth and delay. However, it is typical for real-time multimedia streams to tolerate bounded delay variations and, in some cases, finite losses of packets. We have therefore developed a scheduling algorithm that assumes streams have window-constraints on groups of consecutive packet deadlines. A window-constraint defines the number of packet deadlines that can be missed in a window of deadlines for consecutive packets in a stream. Our algorithm, called Dynamic Window-Constrained Scheduling (DWCS), attempts to guarantee no more than x out of a window of y deadlines are missed for consecutive packets in real-time and multimedia streams. Using DWCS, the delay of service to real-time streams is bounded even when the scheduler is overloaded. Moreover, DWCS is capable of ensuring independent delay bounds on streams, while at the same time guaranteeing minimum bandwidth utilizations over tunable and finite windows of time. We show the conditions under which the total demand for link bandwidth by a set of real-time (i.e., window-constrained) streams can exceed 100% and still ensure all window-constraints are met. In fact, we show how it is possible to guarantee worst-case per-stream bandwidth and delay constraints while utilizing all available link capacity. Finally, we show how best-effort packets can be serviced with fast response time, in the presence of window-constrained traffic.
Resumo:
Considerable scientific and intervention attention has been paid to judgment and decision-making systems associated with aggressive behavior in youth. However, most empirical studies have investigated social-cognitive correlates of stable child and adolescent aggressiveness, and less is known about real-time decision making to engage in aggressive behavior. A model of real-time decision making must incorporate both impulsive actions and rational thought. The present paper advances a process model (response evaluation and decision; RED) of real-time behavioral judgments and decision making in aggressive youths with mathematic representations that may be used to quantify response strength. These components are a heuristic to describe decision making, though it is doubtful that individuals always mentally complete these steps. RED represents an organization of social-cognitive operations believed to be active during the response decision step of social information processing. The model posits that RED processes can be circumvented through impulsive responding. This article provides a description and integration of thoughtful, rational decision making and nonrational impulsivity in aggressive behavioral interactions.