875 resultados para Tight and adherence junctions


Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: Alcohol consumption leading to morbidity and mortality affects HIV-infected individuals. Here, we aimed to study self-reported alcohol consumption and to determine its association with adherence to antiretroviral therapy (ART) and HIV surrogate markers. METHODS: Cross-sectional data on daily alcohol consumption from August 2005 to August 2007 were analysed and categorized according to the World Health Organization definition (light, moderate or severe health risk). Multivariate logistic regression models and Pearson's chi(2) statistics were used to test the influence of alcohol use on endpoints. RESULTS: Of 6,323 individuals, 52.3% consumed alcohol less than once a week in the past 6 months. Alcohol intake was deemed light in 39.9%, moderate in 5.0% and severe in 2.8%. Higher alcohol consumption was significantly associated with older age, less education, injection drug use, being in a drug maintenance programme, psychiatric treatment, hepatitis C virus coinfection and with a longer time since diagnosis of HIV. Lower alcohol consumption was found in males, non-Caucasians, individuals currently on ART and those with more ART experience. In patients on ART (n=4,519), missed doses and alcohol consumption were positively correlated (P<0.001). Severe alcohol consumers, who were pretreated with ART, were more often off treatment despite having CD4+ T-cell count <200 cells/microl; however, severe alcohol consumption per se did not delay starting ART. In treated individuals, alcohol consumption was not associated with worse HIV surrogate markers. CONCLUSIONS: Higher alcohol consumption in HIV-infected individuals was associated with several psychosocial and demographic factors, non-adherence to ART and, in pretreated individuals, being off treatment despite low CD4+ T-cell counts.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective: To assess the relationship among Type D personality, self-efficacy, and medication adherence in patients with coronary heart disease. Methods: The study design was prospective and observational. Type D personality, self-efficacy for illness management behaviors, and medication adherence were measured 3 weeks after hospitalization for acute coronary syndrome in 165 patients (mean [standard deviation] age = 61.62 [10.61] years, 16% women). Self-reported medication adherence was measured 6 months later in 118 of these patients. Multiple linear regression and mediation analyses were used to address the study research questions. Results: Using the original categorical classification, 30% of patients with acute coronary syndrome were classified as having Type D personality. Categorically defined patients with Type D personality had significantly poorer medication adherence at 6 months (r = j0.29, p G .01). Negative affectivity (NA; r = j0.25, p = .01) and social inhibition (r = j0.19, p = .04), the components of Type D personality, were associated with medication adherence 6 months after discharge in bivariate analyses. There was no evidence for the interaction of NA and social inhibition, that is, Type D personality, in the prediction of medication adherence 6 months after discharge in multivariate analysis. The observed association between NA and medication adherence 6 months after discharge could be partly explained by indirect effects through self-efficacy in mediation analysis (coefficient = j0.012; 95% bias-corrected and accelerated confidence interval = j0.036 to j0.001). Conclusions: The present data suggest the primacy of NA over the Type D personality construct in predicting medication adherence. Lower levels of self-efficacy may be a mediator between higher levels of NA and poor adherence to medication in patients with coronary heart disease.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Enterococcus faecium has emerged as an important cause of nosocomial infections over the last two decades. We recently demonstrated collagen type I (CI) as a common adherence target for some E. faecium isolates and a significant correlation was found to exist between acm-mediated CI adherence and clinical origin. Here, we evaluated 60 diverse E. faecium isolates for their adherence to up to 15 immobilized host extracellular matrix and serum components. Adherence phenotypes were most commonly observed to fibronectin (Fn) (20% of the 60 isolates), fibrinogen (17%) and laminin (Ln) (13%), while only one or two of the isolates adhered to collagen type V (CV), transferrin or lactoferrin and none to the other host components tested. Adherence to Fn and Ln was almost exclusively restricted to clinical isolates, especially the endocarditis-enriched nosocomial genogroup clonal complex 17 (CC17). Thus, the ability to adhere to Fn and Ln, in addition to CI, may have contributed to the emergence and adaptation of E. faecium, in particular CC17, as a nosocomial pathogen.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Peptide nucleic acids (PNA) are mimics of nucleic acids with a peptidic backbone. Duplexes and triplexes formed between PNA and DNA or RNA possess remarkable thermal stability, they are resistant to nuclease cleavage and can better discriminate mismatches. Understanding the mechanism for the tight binding between PNA and oligonucleotides is important for the design and development of better PNA-based drugs.^ We have performed molecular dynamics (MD) simulations of 8-mer PNA/DNA duplex and two analogous duplexes with chiral modification of PNA strand (D- or L-Alanine modification). MD simulations were performed with explicit water and Na$\sp{+}$ counter ions. The 1.5-ns simulations were carried out with AMBER using periodic boundary and particle mesh Ewald summation. The point charges for PNA monomers were derived from fitting electrostatic potentials, obtained from ab initio calculation, to atomic centers using RESP. Derived charges reveal significantly altered charge distribution on the PNA bases and predict the Watson-Crick H-bonds involving PNA to be stronger. Results from NMR studies investigating H-bond interactions between DNA-DNA and DNA-PNA base pairs in non-polar environment are consistent with this prediction. MD simulations demonstrated that the PNA strand is more flexible than the DNA strand in the same duplex. That this flexibility might be important for the duplex stability is tested by introducing modification into the PNA backbones. Results from MD simulation revealed dramatically altered structures for the modified PNA-DNA duplexes. Consistent with previous NMR results, we also found no intrachain hydrogen bonds between O7$\sp\prime$ and N1$\sp\prime$ of the neighboring residues in our MD study. Our study reveals that in addition to the lack of charge repulsion, stronger Watson-Crick hydrogen bonds together with flexible backbone are important factors for the enhanced stability of the PNA-DNA duplex.^ In a related study, we have developed an application of Gly-Gly-His-(Gly)$\sb3$-PNA conjugate as an artificial nuclease. We were able to demonstrate cleavage of single stranded DNA at a single site upon Ni(II) binding to Gly-Gly-His tripeptide and activation of nuclease with monoperoxyphthalic acid. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective Non-adherence to medication is common among coronary heart disease patients. Non-adherence to medication may be either intentional or unintentional. In this analysis we provide estimates of intentional and unintentional non-adherence in the year following an acute coronary syndrome (ACS). Method In this descriptive prospective observational study of patients with confirmed ACS medication adherence measures were derived from responses to the Medication Adherence Report Scale at approximately 2 weeks (n = 223), 6 months (n = 139) and 12 months (n = 136) following discharge from acute treatment for ACS. Results Total medication non-adherence was 20%, 54% and 53% at each of these time points respectively. The corresponding figures for intentional non-adherence were 8%, 15% and 15% and 15%, 52% and 53% for unintentional non-adherence. There were significant increases in the levels of medication non-adherence between the immediate discharge period (2 weeks) and 6 months that appeared to stabilize between 6 and 12 months after acute treatment for ACS. Conclusion Unintentional non-adherence to medications may be the primary form of non-adherence in the year following ACS. Interventions delivered early in the post-discharge period may prevent the relatively high levels of non-adherence that appear to become established by 6 months following an ACS.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BackgroundThe polysaccharide capsule is a major virulence factor of the important human pathogen Streptococcus pneumoniae. However, S. pneumoniae strains lacking capsule do occur.ResultsHere, we report a nasopharyngeal isolate of Streptococcus pneumoniae composed of a mixture of two phenotypes; one encapsulated (serotype 18C) and the other nonencapsulated, determined by serotyping, electron microscopy and fluorescence isothiocyanate dextran exclusion assay.By whole genome sequencing, we demonstrated that the phenotypes differ by a single nucleotide base pair in capsular gene cpsE (C to G change at gene position 1135) predicted to result in amino acid change from arginine to glycine at position 379, located in the cytoplasmic, enzymatically active, region of this transmembrane protein. This SNP is responsible for loss of capsule production as the phenotype is transferred with the capsule operon. The nonencapsulated variant is superior in growth in vitro and is also 117-fold more adherent to and more invasive into Detroit 562 human epithelial cells than the encapsulated variant.Expression of six competence pathway genes and one competence-associated gene was 11 to 34-fold higher in the nonencapsulated variant than the encapsulated and transformation frequency was 3.7-fold greater.ConclusionsWe identified a new single point mutation in capsule gene cpsE of a clinical S. pneumoniae serotype 18C isolate sufficient to cause loss of capsule expression resulting in the co-existence of the encapsulated and nonencapsulated phenotype. The mutation caused phenotypic changes in growth, adherence to epithelial cells and transformability. Mutation in capsule gene cpsE may be a way for S. pneumoniae to lose its capsule and increase its colonization potential.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The synthesis and characterisation is described of six diaryltetrayne derivatives [Ar-(C[TRIPLE BOND]C)4-Ar] with Ar=4-NO2-C6H4- (NO24), 4-NH(Me)C6H4- (NHMe4), 4-NMe2C6H4- (NMe24), 4-NH2-(2,6-dimethyl)C6H4- (DMeNH24), 5-indolyl (IN4) and 5-benzothienyl (BTh4). X-ray molecular structures are reported for NO24, NHMe4, DMeNH24, IN4 and BTh4. The stability of the tetraynes has been assessed under ambient laboratory conditions (20 °C, daylight and in air): NO24 and BTh4 are stable for at least six months without observable decomposition, whereas NHMe4, NMe24, DMeNH24 and IN4 decompose within a few hours or days. The derivative DMeNH24, with ortho-methyl groups partially shielding the tetrayne backbone, is considerably more stable than the parent compound with Ar=4-NH2C6H4 (NH24). The ability of the stable tetraynes to anchor in Au|molecule|Au junctions is reported. Scanning-tunnelling-microscopy break junction (STM-BJ) and mechanically controllable break junction (MCBJ) techniques are employed to investigate single-molecule conductance characteristics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The human blood brain barrier (BBB) is a selective barrier formed by human brain endothelial cells (hBECs), which is important to ensure adequate neuronal function and protect the central nervous system (CNS) from disease. The development of human in vitro BBB models is thus of utmost importance for drug discovery programs related to CNS diseases. Here, we describe a method to generate a human BBB model using cord blood-derived hematopoietic stem cells. The cells were initially differentiated into ECs followed by the induction of BBB properties by co-culture with pericytes. The brain-like endothelial cells (BLECs) express tight junctions and transporters typically observed in brain endothelium and maintain expression of most in vivo BBB properties for at least 20 days. The model is very reproducible since it can be generated from stem cells isolated from different donors and in different laboratories, and could be used to predict CNS distribution of compounds in human. Finally, we provide evidence that Wnt/β-catenin signaling pathway mediates in part the BBB inductive properties of pericytes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The blood-brain barrier (BBB) is essential for maintaining homeostasis within the central nervous system (CNS) and is a prerequisite for proper neuronal function. The BBB is localized to microvascular endothelial cells that strictly control the passage of metabolites into and out of the CNS. Complex and continuous tight junctions and lack of fenestrae combined with low pinocytotic activity make the BBB endothelium a tight barrier for water soluble moleucles. In combination with its expression of specific enzymes and transport molecules, the BBB endothelium is unique and distinguishable from all other endothelial cells in the body. During embryonic development, the CNS is vascularized by angiogenic sprouting from vascular networks originating outside of the CNS in a precise spatio-temporal manner. The particular barrier characteristics of BBB endothelial cells are induced during CNS angiogenesis by cross-talk with cellular and acellular elements within the developing CNS. In this review, we summarize the currently known cellular and molecular mechanisms mediating brain angiogenesis and introduce more recently discovered CNS-specific pathways (Wnt/β-catenin, Norrin/Frizzled4 and hedgehog) and molecules (GPR124) that are crucial in BBB differentiation and maturation. Finally, based on observations that BBB dysfunction is associated with many human diseases such as multiple sclerosis, stroke and brain tumors, we discuss recent insights into the molecular mechanisms involved in maintaining barrier characteristics in the mature BBB endothelium.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The formation of blood vessels is a complex tissue-specific process that plays a pivotal role during developmental processes, in wound healing, cancer progression, fibrosis and other pathologies. To study vasculogenesis and vascular remodeling in the context of the lung, we developed an in-vitro microvascular model that closely mimics the human lung microvasculature in terms of 3D architecture, accessibility, functionality and cell types. Human pericytes from the distal airway were isolated and characterized using flow cytometry. To assess their role in the generation of normal microvessels, lung pericytes were mixed in fibrin gel and seeded into well-defined microcompartments together with primary endothelial cells (HUVEC). Patent microvessels covering an area of 3.1 mm2 formed within 3-5 days and were stable for up to 14 days. Soluble signals from the lung pericytes were necessary to establish perfusability, and pericytes migrated towards endothelial microvessels. Cell-cell communication in the form of adherens and tight junctions, as well as secretion of basement membrane was confirmed using transmission electron microscopy and immunocytochemistry on chip. Direct co-culture of pericytes with endothelial cells decreased the microvascular permeability by one order of magnitude from 17.8∙10-6 cm/s to 2.0∙10-6 cm/s and led to vessels with significantly smaller and less variable diameter. Upon phenylephrine administration, vasoconstriction was observed in microvessels lined with pericytes but not in endothelial microvessels only. Perfusable microvessels were also generated with human lung microvascular endothelial cells and lung pericytes. Human lung pericytes were thus shown to have a prominent influence on microvascular morphology, permeability, vasoconstriction and long-term stability in an in-vitro microvascular system. This biomimetic platform opens new possibilities to test functions and interactions of patient-derived cells in a physiologically relevant microvascular setting.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report on the structural characterization of junctions between atomically well-defined graphene nanoribbons (GNRs) by means of low-temperature, noncontact scanning probe microscopy. We show that the combination of simultaneously acquired frequency shift and tunneling current maps with tight binding (TB) simulations allows a comprehensive characterization of the atomic connectivity in the GNR junctions. The proposed approach can be generally applied to the investigation of graphene nanomaterials and their interconnections and is thus expected to become an important tool in the development of graphene-based circuitry.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In epithelial/endothelial barriers, claudins form tight junctions, seal the paracellular cleft, and limit the uptake of solutes and drugs. The peptidomimetic C1C2 from the C-terminal half of claudin-1's first extracellular loop increases drug delivery through epithelial claudin-1 barriers. However, its molecular and structural mode of action remains unknown. In the present study, >100 μM C1C2 caused paracellular opening of various barriers with different claudin compositions, ranging from epithelial to endothelial cells, preferentially modulating claudin-1 and claudin-5. After 6 h incubation, C1C2 reversibly increased the permeability to molecules of different sizes; this was accompanied by redistribution of claudins and occludin from junctions to cytosol. Internalization of C1C2 in epithelial cells depended on claudin-1 expression and clathrin pathway, whereby most C1C2 was retained in recyclosomes >2 h. In freeze-fracture electron microscopy, C1C2 changed claudin-1 tight junction strands to a more parallel arrangement and claudin-5 strands from E-face to P-face association - drastic and novel effects. In conclusion, C1C2 is largely recycled in the presence of a claudin, which explains the delayed onset of barrier and junction loss, the high peptide concentration required and the long-lasting effect. Epithelial/endothelial barriers are specifically modulated via claudin-1/claudin-5, which can be targeted to improve drug delivery.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Research on lifestyle physical activity interventions suggests that they help individuals meet the new recommendations for physical activity made by the Centers for Disease Control and Prevention (CDC) and the American College of Sports Medicine (ACSM). The purpose of this research was to describe the rates of adherence to two lifestyle physical activity intervention arms and to examine the association between adherence and outcome variables, using data from Project PRIME, a lifestyle physical activity intervention based on the transtheoretical model and conducted by the Cooper Institute of Aerobics Research, Dallas, Texas. Participants were 250 sedentary healthy adults, aged 35 to 70 years, primarily non-Hispanic White, and in the contemplation and preparation stages of readiness to change. They were randomized to a group (PRIME G) or a mail- and telephone-delivered condition (PRIME C). Adherence measures included attending class (PRIME G), completing a monthly telephone call with a health educator (PRIME C), and completing homework assignments and self-monitoring minutes of moderate- to vigorous physical activity (both groups). In the first results paper, adherence over time and between conditions was examined: Attendance in group, completing the monthly telephone call, and homework completion decreased over time, and participants in PRIME G were more likely to complete homework than those in PRIME C. Paper 2 aimed to determine whether the adherence measures predicted achievement of the CDC/ACSM physical activity guideline. In separate models for the two conditions, a latent variable measuring adherence was found to predict achievement of the guideline. Paper 3 examined the association between adherence measures and the transtheoretical model's processes of change within each condition. For both, participants who completed at least two thirds of the homework assignments improved their use of the processes of change more than those who completed less than that amount. These results suggest that encouraging adherence to a lifestyle physical activity intervention, at least among already motivated volunteers, may increase the likelihood of beneficial changes in the outcomes. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A number of tight urinary epithelia, as exemplified by the turtle bladder, acidify the luminal solution by active transport of H+ across the luminal cell membrane. The rate of active H+ transport (JH) decreases as the electrochemical potential difference for H+ [delta mu H = mu H(lumen) - mu H(serosa)] across the epithelium is increased. The luminal cell membrane has a low permeability for H+ equivalents and a high electrical resistance compared with the basolateral cell membrane. Changes in JH thus reflect changes in active H+ transport across the luminal membrane. To examine the control of JH by delta mu H in the turtle bladder, transepithelial electrical potential differences (delta psi) were imposed at constant acid-base conditions or the luminal pH was varied at delta psi = 0 and constant serosal PCO2 and pH. When the luminal compartment was acidified from pH 7 to 4 or was made electrically positive, JH decreased as a linear function of delta mu H as previously described. When the luminal compartment was made alkaline from pH 7 to 9 or was made electrically negative, JH reached a maximal value, which was the same whether the delta mu H was imposed as a delta pH or a delta psi. The nonlinear JH vs. delta mu H relation does not result from changes in the number of pumps in the luminal membrane or from changes in the intracellular pH, but is a characteristic of the H+ pumps themselves. We propose a general scheme, which, because of its structural features, can account for the nonlinearity of the JH vs. delta mu H relations and, more specifically, for the kinetic equivalence of the effects of the chemical and electrical components of delta mu H. According to this model, the pump complex consists of two components: a catalytic unit at the cytoplasmic side of the luminal membrane, which mediates the ATP-driven H+ translocation, and a transmembrane channel, which mediates the transfer of H+ from the catalytic unit to the luminal solution. These two components may be linked through a buffer compartment for H+ (an antechamber).