919 resultados para Three-phase Integrated Inverter


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evaluation of the quality of the environment is essential for human wellness as pollutants in trace amounts can cause serious health problem. Nitrosamines are a group of compounds that are considered potential carcinogens and can be found in drinking water (as disinfection byproducts), foods, beverages and cosmetics. To monitor the level of these compounds to minimize daily intakes, fast and reliable analytical techniques are required. As these compounds are relatively highly polar, extraction and enrichment from environmental samples (aqueous) are challenging. Also, the trend of analytical techniques toward the reduction of sample size and minimization of organic solvent use demands new methods of analysis. In light of fulfilling these requirements, a new method of online preconcentration tailored to an electrokinetic chromatography is introduced. In this method, electroosmotic flow (EOF) was suppressed to increase the interaction time between analyte and micellar phase, therefore the only force to mobilize the neutral analytes is the interaction of analyte with moving micelles. In absence of EOF, polarity of applied potential was switched (negative or positive) to force (anionic or cationic) micelles to move toward the detector. To avoid the excessive band broadening due to longer analysis time caused by slow moving micelles, auxiliary pressure was introduced to boost the micelle movement toward the detector using an in house designed and built apparatus. Applying the external auxiliary pressure significantly reduced the analysis times without compromising separation efficiency. Parameters, such as type of surfactants, composition of background electrolyte (BGE), type of capillary, matrix effect, organic modifiers, etc., were evaluated in optimization of the method. The enrichment factors for targeted analytes were impressive, particularly; cationic surfactants were shown to be suitable for analysis of nitrosamines due to their ability to act as hydrogen bond donors. Ammonium perfluorooctanoate (APFO) also showed remarkable results in term of peak shapes and number of theoretical plates. It was shown that the separation results were best when a high conductivity sample was paired with a BGE of lower conductivity. Using higher surfactant concentrations (up to 200 mM SDS) than usual (50 mM SDS) for micellar electrokinetic chromatography (MEKC) improved the sweeping. A new method for micro-extraction and enrichment of highly polar neutral analytes (N-Nitrosamines in particular) based on three-phase drop micro-extraction was introduced and its performance studied. In this method, a new device using some easy-to-find components was fabricated and its operation and application demonstrated. Compared to conventional extraction methods (liquid-liquid extraction), consumption of organic solvents and operation times were significantly lower.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este artículo presenta un resultado de investigación financiado con recursos propios en el que se expone un modelo en espacio de estados de un rectificador trifásico controlado active front end. Utilizando este modelo se deriva una ley de control orientado al voltaje (VOC), enfocado en el comportamiento como carga resistiva, factor de potencia unitario, el cual es probado mediante simulación usando el Toolbox SimPowerSystem en Simulink de Matlab®.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study presents a proposal of speed servomechanisms without the use of mechanical sensors (sensorless) using induction motors. A comparison is performed and propose techniques for pet rotor speed, analyzing performance in different conditions of speed and load. For the determination of control technique, initially, is performed an analysis of the technical literature of the main control and speed estimation used, with their characteristics and limitations. The proposed technique for servo sensorless speed induction motor uses indirect field-oriented control (IFOC), composed of four controllers of the proportional-integral type (PI): rotor flux controller, speed controller and current controllers in the direct and quadrature shaft. As the main focus of the work is in the speed control loop was implemented in Matlab the recursive least squares algorithm (RLS) for identification of mechanical parameters, such as moment of inertia and friction coefficient. Thus, the speed of outer loop controller gains can be self adjusted to compensate for any changes in the mechanical parameters. For speed estimation techniques are analyzed: MRAS by rotóricos fluxes MRAS by counter EMF, MRAS by instantaneous reactive power, slip, locked loop phase (PLL) and sliding mode. A proposition of estimation in sliding mode based on speed, which is performed a change in rotor flux observer structure is displayed. To evaluate the techniques are performed theoretical analyzes in Matlab simulation environment and experimental platform in electrical machinery drives. The DSP TMS320F28069 was used for experimental implementation of speed estimation techniques and check the performance of the same in a wide speed range, including load insertion. From this analysis is carried out to implement closed-loop control of sensorless speed IFOC structure. The results demonstrated the real possibility of replacing mechanical sensors for estimation techniques proposed and analyzed. Among these, the estimator based on PLL demonstrated the best performance in various conditions, while the technique based on sliding mode has good capacity estimation in steady state and robustness to parametric variations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The forensic toxicologist faces challenges in the detection of drugs and poisons in biological samples due to transformations which occur both during life and after death. For example, changes can result from drug metabolism during life or from the use of formalin solution for post mortem embalming purposes. The former requires the identification of drug metabolites and the latter the identification of chemical reaction products in order to know which substances had been administered. The work described in this thesis was aimed at providing ways of tackling these challenges and was divided into two parts. Part 1 investigated the use of in vitro drug metabolism by human liver microsomes (HLM) to obtain information on drug metabolites and Part 2 investigated the chemical reactions of drugs and a carbamate pesticide with formalin solution and formalin-blood. The initial aim of part I was to develop an in vitro metabolism method using HLM, based on a literature review of previous studies of this type. MDMA was chosen as a model compound to develop the HLM method because its metabolism was known and standards of its metabolites were commercially available. In addition, a sensitive and selective method was developed for the identification and quantitation of hydrophilic phase I drug metabolites using LC/MS/MS with a conventional reverse-phase (C18) column. In order to obtain suitable retention factors for polar drug metabolites on this column, acetyl derivatives were evaluated for converting the metabolites to more lipophilic compounds and an optimal separation system was developed. Acetate derivatives were found to be stable in the HPLC mobile phase and to provide good chromatographic separation of the target analytes. In vitro metabolism of MDMA and, subsequently, of other drugs involved incubation of 4 µg drug substance in pH 7.4 buffer with an NADPH generating system (NGS) at 37oC for 90 min with addition of more NGS after 30 min. The reaction was stopped at 90 min by the addition of acetonitrile before extraction of the metabolites. Acetate derivatives of MDMA metabolites were identified by LC/MS/MS using multiple reaction monitoring (MRM). Three phase I metabolites (both major and minor metabolites) of MDMA were detected in HLM samples. 3,4-dihydroxy-methamphetamine and 4-hydroxy-3-methoxymethamphetamine were found to be major metabolites of MDMA whereas 3,4-methylenedioxyamphetamine was found to be a minor metabolite. Subsequently, ten MDMA positive urines were analysed to compare the metabolite patterns with those produced by HLM. An LC/MS method for MDMA and its metabolites in urine samples was developed and validated. The method demonstrated good linearity, accuracy and precision and insignificant matrix effects, with limits of quantitation of 0.025 µg/ml. Moreover, derivatives of MDMA and its metabolites were quantified in all 10 positive human urine samples. The urine metabolite pattern was found to be similar to that from HLM. The second aim of Part 1 was to use the HLM system to study the metabolism of some new psychoactive substances, whose misuse worldwide has necessitated the development of analytical methods for these drugs in biological specimens. Methylone and butylone were selected as representative cathinones and para-methoxyamphetamine (PMA) was chosen as a representative ring-substituted amphetamine, because of the involvement of these drugs in recent drug-related deaths, because of a relative lack of information on their metabolism, and because reference standards of their metabolites were not commercially available. An LC/MS/MS method for the analysis of methylone, butylone, PMA and their metabolites was developed. Three phase I metabolites of methylone and butylone were detected in HLM samples. Ketone reduction to β-OH metabolites and demethylenation to dihydroxy-metabolites were found to be major phase I metabolic pathways of butylone and methylone whereas N-demethylation to nor-methylone and nor-butylone were found to be minor pathways. Also, demethylation to para-hydroxyamphetamine was found to be a major phase I metabolic pathway of PMA whereas β-hydroxylation to β-OH-PMA was found to be a minor pathway. Formaldehyde is used for embalming, to reduce decomposition and preserve cadavers, especially in tropical countries such as Thailand. Drugs present in the body can be exposed to formaldehyde resulting in decreasing concentrations of the original compounds and production of new substances. The aim of part II of the study was to evaluate the in vitro reactions of formaldehyde with selected drug groups including amphetamines (amphetamine, methamphetamine and MDMA), benzodiazepines (alprazolam and diazepam), opiates (morphine, hydromorphone, codeine and hydrocodone) and with a carbamate insecticide (carbosulfan). The study would identify degradation products to serve as markers for the parent compounds when these were no longer detectable. Drugs standards were spiked in 10% formalin solution and 10% formalin blood. Water and whole blood without formalin were used for controls. Samples were analysed by LC/MS/MS at different times from the start, over periods of up to 30 days. Amphetamine, methamphetamine and MDMA were found to rapidly convert to methamphetamine, DMA and MDDMA respectively, in both formalin solution and formalin blood, confirming the Eschweiler-Clarke reaction between amine-containing compounds and formaldehyde. Alprazolam was found to be unstable whereas diazepam was found to be stable in both formalin solution and water. Both were found to hydrolyse in formalin solution and to give open-ring alprazolam and open-ring diazepam. Other alprazolam conversion products attached to paraformaldehyde were detected in both formalin solution and formalin blood. Morphine and codeine were found to be more stable than hydromorphone and hydrocodone in formalin solution. Conversion products of hydromorphone and hydrocodone attached to paraformaldehyde were tentatively identified in formalin solution. Moreover, hydrocodone and hydromorphone rapidly decreased within 24 h in formalin blood and could not be detected after 7 days. Carbosulfan was found to be unstable in formalin solution and was rapidly hydrolysed within 24 h, whereas in water it was stable up to 48 h. Carbofuran was the major degradation product, plus smaller amounts of other products, 3-ketocarbofuran and 3-hydrocarbofuran. By contrast, carbosulfan slowly hydrolysed in formalin-blood and was still detected after 15 days. It was concluded that HLM provide a useful tool for human drug metabolism studies when ethical considerations preclude their controlled administration to humans. The use of chemical derivatisation for hydrophilic compounds such as polar drug metabolites for analysis by LC/MS/MS with a conventional C18 column is effective and inexpensive, and suitable for routine use in the identification and quantitation of drugs and their metabolites. The detection of parent drugs and their metabolites or conversion and decomposition products is potentially very useful for the interpretation of cases in forensic toxicology, especially when the original compounds cannot be observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As the semiconductor industry struggles to maintain its momentum down the path following the Moore's Law, three dimensional integrated circuit (3D IC) technology has emerged as a promising solution to achieve higher integration density, better performance, and lower power consumption. However, despite its significant improvement in electrical performance, 3D IC presents several serious physical design challenges. In this dissertation, we investigate physical design methodologies for 3D ICs with primary focus on two areas: low power 3D clock tree design, and reliability degradation modeling and management. Clock trees are essential parts for digital system which dissipate a large amount of power due to high capacitive loads. The majority of existing 3D clock tree designs focus on minimizing the total wire length, which produces sub-optimal results for power optimization. In this dissertation, we formulate a 3D clock tree design flow which directly optimizes for clock power. Besides, we also investigate the design methodology for clock gating a 3D clock tree, which uses shutdown gates to selectively turn off unnecessary clock activities. Different from the common assumption in 2D ICs that shutdown gates are cheap thus can be applied at every clock node, shutdown gates in 3D ICs introduce additional control TSVs, which compete with clock TSVs for placement resources. We explore the design methodologies to produce the optimal allocation and placement for clock and control TSVs so that the clock power is minimized. We show that the proposed synthesis flow saves significant clock power while accounting for available TSV placement area. Vertical integration also brings new reliability challenges including TSV's electromigration (EM) and several other reliability loss mechanisms caused by TSV-induced stress. These reliability loss models involve complex inter-dependencies between electrical and thermal conditions, which have not been investigated in the past. In this dissertation we set up an electrical/thermal/reliability co-simulation framework to capture the transient of reliability loss in 3D ICs. We further derive and validate an analytical reliability objective function that can be integrated into the 3D placement design flow. The reliability aware placement scheme enables co-design and co-optimization of both the electrical and reliability property, thus improves both the circuit's performance and its lifetime. Our electrical/reliability co-design scheme avoids unnecessary design cycles or application of ad-hoc fixes that lead to sub-optimal performance. Vertical integration also enables stacking DRAM on top of CPU, providing high bandwidth and short latency. However, non-uniform voltage fluctuation and local thermal hotspot in CPU layers are coupled into DRAM layers, causing a non-uniform bit-cell leakage (thereby bit flip) distribution. We propose a performance-power-resilience simulation framework to capture DRAM soft error in 3D multi-core CPU systems. In addition, a dynamic resilience management (DRM) scheme is investigated, which adaptively tunes CPU's operating points to adjust DRAM's voltage noise and thermal condition during runtime. The DRM uses dynamic frequency scaling to achieve a resilience borrow-in strategy, which effectively enhances DRAM's resilience without sacrificing performance. The proposed physical design methodologies should act as important building blocks for 3D ICs and push 3D ICs toward mainstream acceptance in the near future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Matrix power converters are used for transforming one alternating-current power supply to another, with different peak voltage and frequency. There are three input lines, with sinusoidally varying voltages which are 120◦ out of phase one from another, and the output is to be delivered as a similar three-phase supply. The matrix converter switches rapidly, to connect each output line in sequence to each of the input lines in an attempt to synthesize the prescribed output voltages. The switching is carried out at high frequency and it is of practical importance to know the frequency spectra of the output voltages and of the input and output currents. We determine in this paper these spectra using a new method, which has significant advantages over the prior default method (a multiple Fourier series technique), leading to a considerably more direct calculation. In particular, the determination of the input current spectrum is feasible here, whereas it would be a significantly more daunting procedure using the prior method instead.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Matrix converters convert a three-phase alternating-current power supply to a power supply of a different peak voltage and frequency, and are an emerging technology in a wide variety of applications. However, they are susceptible to an instability, whose behaviour is examined herein. The desired “steady-state” mode of operation of the matrix converter becomes unstable in a Hopf bifurcation as the output/input voltage transfer ratio, q, is increased through some threshold value, qc. Through weakly nonlinear analysis and direct numerical simulation of an averaged model, we show that this bifurcation is subcritical for typical parameter values, leading to hysteresis in the transition to the oscillatory state: there may thus be undesirable large-amplitude oscillations in the output voltages even when q is below the linear stability threshold value qc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Harmonic distortion on voltages and currents increases with the increased penetration of Plug-in Electric Vehicle (PEV) loads in distribution systems. Wind Generators (WGs), which are source of harmonic currents, have some common harmonic profiles with PEVs. Thus, WGs can be utilized in careful ways to subside the effect of PEVs on harmonic distortion. This work studies the impact of PEVs on harmonic distortions and integration of WGs to reduce it. A decoupled harmonic three-phase unbalanced distribution system model is developed in OpenDSS, where PEVs and WGs are represented by harmonic current loads and sources respectively. The developed model is first used to solve harmonic power flow on IEEE 34-bus distribution system with low, moderate, and high penetration of PEVs, and its impact on current/voltage Total Harmonic Distortions (THDs) is studied. This study shows that the voltage and current THDs could be increased upto 9.5% and 50% respectively, in case of distribution systems with high PEV penetration and these THD values are significantly larger than the limits prescribed by the IEEE standards. Next, carefully sized WGs are selected at different locations in the 34-bus distribution system to demonstrate reduction in the current/voltage THDs. In this work, a framework is also developed to find optimal size of WGs to reduce THDs below prescribed operational limits in distribution circuits with PEV loads. The optimization framework is implemented in MATLAB using Genetic Algorithm, which is interfaced with the harmonic power flow model developed in OpenDSS. The developed framework is used to find optimal size of WGs on the 34-bus distribution system with low, moderate, and high penetration of PEVs, with an objective to reduce voltage/current THD deviations throughout the distribution circuits. With the optimal size of WGs in distribution systems with PEV loads, the current and voltage THDs are reduced below 5% and 7% respectively, which are within the limits prescribed by IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The challenge for wastewater professionals is to design and operate treatment processes that support human well being and are environmentally sensitive throughout the life-cycle. This research focuses on one technology for small-scale wastewater treatment: the vertical flow constructed wetland (VFCW), which is herein investigated for the capacity to remove ammonium and nitrate nitrogen from wastewater. Hydraulic regime and presence/absence of vegetation are the basis for a three-phase bench scale experiment to determine oxygen transfer and nitrogen fate in VFCWs. Results show that 90% NH4+-N removal is achieved in aerobic downflow columns, 60% NO3--N removal occurs in anaerobic upflow columns, and 60% removal of total nitrogen can be achieved in downflow-upflow in-series. The experimental results are studied further using a variably saturated flow and reactive transport model, which allows a mechanistic explanation of the fate and transport of oxygen and nitrogen. The model clarifies the mechanisms of oxygen transport and nitrogen consumption, and clarifies the need for readily biodegradable COD for denitrification. A VFCW is then compared to a horizontal flow constructed wetland (HFCW) for life cycle environmental impacts. High areal emissions of greenhouse gases from VFCWs compared to HFCWs are the driver for the study. The assessment shows that because a VFCW is only 25% of the volume of an HFCW designed for the same treatment quality, the VFCW has only 25-30% of HFCW impacts over 12 impact categories and 3 damage categories. Results show that impacts could be reduced by design improvements. Design recommendations are downflow wetlands for nitrification, upflow wetlands for denitrification, series wetlands for total nitrogen removal, hydraulic load of 142 L/m2d, 30 cm downflow wetland depth, 1.0 m upflow wetland depth, recycle, vegetation and medium-grained sand. These improvements will optimize nitrogen removal, minimize gaseous emissions, and reduce wetland material requirements, thus reducing environmental impact without sacrificing wastewater treatment quality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Character education has been viewed by many educators as having significant historical, academic, and social value. Many stakeholders in education argue for character development as a curricular experience. While understanding the degree to which character education is of worth to stakeholders of institutions is important, understanding students, teachers, and administrators perspectives from their lived experiences is likewise significant. The purpose of this phenomenological study was to gain a deeper understanding of character education within a Biblical framework environment by examining the lived experiences of students, administrators, and teachers of a Seventh-day Adventist School. Phenomenology describes individuals’ daily experiences of phenomena, the manner in which these experiences are structured, and focuses analysis on the perspectives of the persons having the experience (Moustakas, 1994). ). This inquiry was undertaken to answer the question: What are the perceptions of students, teachers, and an administrator toward character education in a Seventh-day Adventist school setting? Ten participants (seven students and three adults) formed the homogeneous purposive sample, and the major data collection tool was semi-structured interviews (Patton, 1990; Seidman, 2006). Three 90-minute open-ended interviews were conducted with each of the participants. Data analysis included a three-phase process of description, reduction and interpretation. The findings from this study revealed that participants perceived that their involvement in the school’s character education program decreased the tendency to violence, improved their conduct and ethical sensibility, enhanced their ability to engage in decision-making concerning social relationships and their impact on others, brought to their attention the emerging global awareness of moral deficiency, and fostered incremental progress from practice and recognition of vices to their acquisition of virtues. The findings, therefore, provide a model for teaching character education from a Seventh-day Adventist perspective. The model is also relevant for non-Seventh day Adventists who aspire to teach character education as a means to improving social and moral conditions in schools.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modern electric machine drives, particularly three phase permanent magnet machine drive systems represent an indispensable part of high power density products. Such products include; hybrid electric vehicles, large propulsion systems, and automation products. Reliability and cost of these products are directly related to the reliability and cost of these systems. The compatibility of the electric machine and its drive system for optimal cost and operation has been a large challenge in industrial applications. The main objective of this dissertation is to find a design and control scheme for the best compromise between the reliability and optimality of the electric machine-drive system. The effort presented here is motivated by the need to find new techniques to connect the design and control of electric machines and drive systems. A highly accurate and computationally efficient modeling process was developed to monitor the magnetic, thermal, and electrical aspects of the electric machine in its operational environments. The modeling process was also utilized in the design process in form finite element based optimization process. It was also used in hardware in the loop finite element based optimization process. The modeling process was later employed in the design of a very accurate and highly efficient physics-based customized observers that are required for the fault diagnosis as well the sensorless rotor position estimation. Two test setups with different ratings and topologies were numerically and experimentally tested to verify the effectiveness of the proposed techniques. The modeling process was also employed in the real-time demagnetization control of the machine. Various real-time scenarios were successfully verified. It was shown that this process gives the potential to optimally redefine the assumptions in sizing the permanent magnets of the machine and DC bus voltage of the drive for the worst operating conditions. The mathematical development and stability criteria of the physics-based modeling of the machine, design optimization, and the physics-based fault diagnosis and the physics-based sensorless technique are described in detail. To investigate the performance of the developed design test-bed, software and hardware setups were constructed first. Several topologies of the permanent magnet machine were optimized inside the optimization test-bed. To investigate the performance of the developed sensorless control, a test-bed including a 0.25 (kW) surface mounted permanent magnet synchronous machine example was created. The verification of the proposed technique in a range from medium to very low speed, effectively show the intelligent design capability of the proposed system. Additionally, to investigate the performance of the developed fault diagnosis system, a test-bed including a 0.8 (kW) surface mounted permanent magnet synchronous machine example with trapezoidal back electromotive force was created. The results verify the use of the proposed technique under dynamic eccentricity, DC bus voltage variations, and harmonic loading condition make the system an ideal case for propulsion systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

What qualities, skills, and knowledge produce quality teachers? Many stake-holders in education argue that teacher quality should be measured by student achievement. This qualitative study shows that good teachers are multi-dimensional; their effectiveness cannot be represented by students’ test scores alone. The purpose of this phenomenological study was to gain a deeper understanding of quality in teaching by examining the lived experiences of 10 winners or finalists of the Teacher of the Year (ToY) Award. Phenomenology describes individuals’ daily experiences of phenomena, examines how these experiences are structured, and focuses analysis on the perspectives of the persons having the experience (Moustakas, 1994). This inquiry asked two questions: (a) How is teaching experienced by recognized as outstanding Teachers of the Year? and (b) How do ToYs feelings and perceptions about being good teachers provide insight, if any, about concepts such as pedagogical tact, teacher selfhood, and professional dispositions? Ten participants formed the purposive sample; the major data collection tool was semi-structured interviews (Patton, 1990; Seidman, 2006). Sixty to 90-minute interviews were conducted with each participant. Data also included the participants’ ToY application essays. Data analysis included a three-phase process: description, reduction, interpretation. Findings revealed that the ToYs are dedicated, hard-working individuals. They exhibit behaviors, such as working beyond the school day, engaging in lifelong learning, and assisting colleagues to improve their practice. Working as teachers is their life’s compass, guiding and wrapping them into meaningful and purposeful lives. Pedagogical tact, teacher selfhood, and professional dispositions were shown to be relevant, offering important insights into good teaching. Results indicate that for these ToYs, good teaching is experienced by getting through to students using effective and moral means; they are emotionally open, have a sense of the sacred, and they operate from a sense of intentionality. The essence of the ToYs teaching experience was their being properly engaged in their craft, embodying logical, psychological, and moral realms. Findings challenge current teacher effectiveness process-product orthodoxy which makes a causal connection between effective teaching and student test scores, and which assumes that effective teaching arises solely from and because of the actions of the teacher.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydroelectric systems are well-known for large scale power generation. However, there are virtually no studies on energy harvesting with these systems to produce tens or hundreds of milliwatts. The goal of this work was to study which design parameters from large-scale systems can be applied to small-scale systems. Two types of hydro turbines were evaluated. The first one was a Pelton turbine which is suitable for high heads and low flow rates. The second one was a propeller turbine used for low heads and high flow rates. Several turbine geometries and nozzle diameters were tested for the Pelton system. For the propeller, a three-bladed turbine was tested for different heads and draft tubes. The mechanical power provided by these turbines was measured to evaluate the range of efficiencies of these systems. A small three-phase generator was developed for coupling with the turbines in order to evaluate the generated electric power. Selected turbines were used to test battery charging with hydroelectric systems and a comparison between several efficiencies of the systems was made. Keywords

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydroelectric systems are well-known for large scale power generation. However, there are virtually no studies on energy harvesting with these systems to produce tens or hundreds of milliwatts. The goal of this work was to study which design parameters from large-scale systems can be applied to small-scale systems. Two types of hydro turbines were evaluated. The first one was a Pelton turbine which is suitable for high heads and low flow rates. The second one was a propeller turbine used for low heads and high flow rates. Several turbine geometries and nozzle diameters were tested for the Pelton system. For the propeller, a three-bladed turbine was tested for different heads and draft tubes. The mechanical power provided by these turbines was measured to evaluate the range of efficiencies of these systems. A small three-phase generator was developed for coupling with the turbines in order to evaluate the generated electric power. Selected turbines were used to test battery charging with hydroelectric systems and a comparison between several efficiencies of the systems was made. Keywords

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spatial distribution of the magnetic field and the coupling between the coils in the Wireless Power Transfer (WPT) systems is an important aspect to consider in the system design and efficiency optimization. The presented study in this paper is based on tests performed on a physical model. The transmitting (primary) equipment, is an electrical three-phase system, capable to be connected in star or delta (both electrically and geometrically). The measured results allow to describe graphically the magnetic field distribution in three dimensions. The analytical formulas aim to help to understand and to quantify the physical phenomena but they cannot be considered a universal approach and the measurement results help to understand better the observable facts. In the WPT, the key issues that will influence the efficiency, are the alignment of the coils, the spatial orientation of the magnetic field, the detachment and the tilt between the windings, all they changing the magnetic coupling between the transmitter and the receiver of energy. This research is directed not only to the magnetic field distribution but finally, to optimize the energy transfer efficiency.