954 resultados para Three-dimensional (3-d)
Resumo:
Objectives: Left atrial (LA) volume (LAV) is a prognostically important biomarker for diastolic dysfunction, but its reproducibility on repeated testing is not well defined. LA assessment with 3-dimensional. (3D) echocardiography (3DE) has been validated against magnetic resonance imaging, and we sought to assess whether this was superior to existing measurements for sequential echocardiographic follow-up. Methods: Patients (n = 100; 81 men; age 56 +/- 14 years) presenting for LA evaluation were studied with M-mode (MM) echocardiography, 2-dimensional (2D) echocardiography, and 3DE. Test-retest variation was performed by a complete restudy by a separate sonographer within 1 hour without alteration of hemodynamics or therapy. In all, 20 patients were studied for interobserver and intraobserver variation. LAVs were calculated by using M-mode diameter and planimetered atrial area in the apical. 4-chamber view to calculate an assumed sphere, as were prolate ellipsoid, Simpson's biplane, and biplane area-length methods. All were compared with 3DE. Results: The average LAV was 72 +/- 27 mL by 3DE. There was significant underestimation of LAV by M-mode (35 +/- 20 mL, r = 0.66, P < .01). The 3DE and various 2D echocardiographic techniques were well correlated: LA planimetry (85 +/- 38 mL, r = 0.77, P < .01), prolate ellipsoid (73 +/- 36 mL, r = 0.73, P = .04), area-length (64 +/- 30 mL, r = 0.74, P < .01), and Simpson's biplane (69 +/- 31 mL, r = 0.78, P = .06). Test-retest variation for 3DE was most favorable (r = 0.98, P < .01), with the prolate ellipsoid method showing most variation. Interobserver agreement between measurements was best for 3DE (r = 0.99, P < .01), with M-mode the worst (r = 0.89, P < .01). Intraobserver results were similar to interobserver, the best correlation for 3DE (r = 0.99, P < .01), with LA planimetry the worst (r = 0.91, P < .01). Conclusions. The 2D measurements correlate closely with 3DE. Follow-up assessment in daily practice appears feasible and reliable with both 2D and 3D approaches.
Resumo:
This paper describes a biventricular model, which couples the electrical and mechanical properties of the heart, and computer simulations of ventricular wall motion and deformation by means of a biventricular model. In the constructed electromechanical model, the mechanical analysis was based on composite material theory and the finite-element method; the propagation of electrical excitation was simulated using an electrical heart model, and the resulting active forces were used to calculate ventricular wall motion. Regional deformation and Lagrangian strain tensors were calculated during the systole phase. Displacements, minimum principal strains and torsion angle were used to describe the motion of the two ventricles. The simulations showed that during the period of systole, (1) the right ventricular free wall moves towards the septum, and at the same time, the base and middle of the free wall move towards the apex, which reduces the volume of the right ventricle; the minimum principle strain (E3) is largest at the apex, then at the middle of the free wall and its direction is in the approximate direction of the epicardial muscle fibres; (2) the base and middle of the left ventricular free wall move towards the apex and the apex remains almost static; the torsion angle is largest at the apex; the minimum principle strain E3 is largest at the apex and its direction on the surface of the middle wall of the left ventricle is roughly in the fibre orientation. These results are in good accordance with results obtained from MR tagging images reported in the literature. This study suggests that such an electromechanical biventricular model has the potential to be used to assess the mechanical function of the two ventricles, and also could improve the accuracy ECG simulation when it is used in heart torso model-based body surface potential simulation studies.
Resumo:
The in vitro and in vivo degradation properties of poly(lactic-co-glycolic acid) (PLGA) scaffolds produced by two different technologies-therm ally induced phase separation (TIPS), and solvent casting and particulate leaching (SCPL) were compared. Over 6 weeks, in vitro degradation produced changes in SCPL scaffold dimension, mass, internal architecture and mechanical properties. TIPS scaffolds produced far less changes in these parameters providing significant advantages over SCPL. In vivo results were based on a microsurgically created arteriovenous (AV) loop sandwiched between two TIPS scaffolds placed in a polycarbonate chamber under rat groin skin. Histologically, a predominant foreign body giant cell response and reduced vascularity was evident in tissue ingrowth between 2 and 8 weeks in TIPS scaffolds. Tissue death occurred at 8 weeks in the smallest pores. Morphometric comparison of TIPS and SCPL scaffolds indicated slightly better tissue ingrowth but greater loss of scaffold structure in SCPL scaffolds. Although advantageous in vitro, large surface area:volume ratios and varying pore sizes in PLGA TIPS scaffolds mean that effective in vivo (AV loop) utilization will only be achieved if the foreign body response can be significantly reduced so as to allow successful vascularisation, and hence sustained tissue growth, in pores less than 300 mu m. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The critical process parameter for mineral separation is the degree of mineral liberation achieved by comminution. The degree of liberation provides an upper limit of efficiency for any physical separation process. The standard approach to measuring mineral liberation uses mineralogical analysis based two-dimensional sections of particles which may be acquired using a scanning electron microscope and back-scatter electron analysis or from an analysis of an image acquired using an optical microscope. Over the last 100 years, mathematical techniques have been developed to use this two dimensional information to infer three-dimensional information about the particles. For mineral processing, a particle that contains more than one mineral (a composite particle) may appear to be liberated (contain only one mineral) when analysed using only its revealed particle section. The mathematical techniques used to interpret three-dimensional information belong, to a branch of mathematics called stereology. However methods to obtain the full mineral liberation distribution of particles from particle sections are relatively new. To verify these adjustment methods, we require an experimental method which can accurately measure both sectional and three dimensional properties. Micro Cone Beam Tomography provides such a method for suitable particles and hence, provides a way to validate methods used to convert two-dimensional measurements to three dimensional estimates. For this study ore particles from a well-characterised sample were subjected to conventional mineralogical analysis (using particle sections) to estimate three-dimensional properties of the particles. A subset of these particles was analysed using a micro-cone beam tomograph. This paper presents a comparison of the three-dimensional properties predicted from measured two-dimensional sections with the measured three-dimensional properties.
Resumo:
Temperature is an important parameter controlling protein crystal growth. A new temperature-screening system (Thermo-screen) is described consisting of a gradient thermocycler fitted with a special crystallization-plate adapter onto which a 192-well sitting-drop crystallization plate can be mounted (temperature range 277-372 K; maximum temperature gradient 20 K; interval precision 0.3 K). The system allows 16 different conditions to be monitored simultaneously over a range of 12 temperatures and is well suited to conduct wide (similar to 20 K) and fine (similar to 3 K) temperature-optimization screens. It can potentially aid in the determination of temperature phase diagrams and run more complex temperature-cycling experiments for seeding and crystal growth.
Resumo:
An appreciation of the physical mechanisms which cause observed seismicity complexity is fundamental to the understanding of the temporal behaviour of faults and single slip events. Numerical simulation of fault slip can provide insights into fault processes by allowing exploration of parameter spaces which influence microscopic and macroscopic physics of processes which may lead towards an answer to those questions. Particle-based models such as the Lattice Solid Model have been used previously for the simulation of stick-slip dynamics of faults, although mainly in two dimensions. Recent increases in the power of computers and the ability to use the power of parallel computer systems have made it possible to extend particle-based fault simulations to three dimensions. In this paper a particle-based numerical model of a rough planar fault embedded between two elastic blocks in three dimensions is presented. A very simple friction law without any rate dependency and no spatial heterogeneity in the intrinsic coefficient of friction is used in the model. To simulate earthquake dynamics the model is sheared in a direction parallel to the fault plane with a constant velocity at the driving edges. Spontaneous slip occurs on the fault when the shear stress is large enough to overcome the frictional forces on the fault. Slip events with a wide range of event sizes are observed. Investigation of the temporal evolution and spatial distribution of slip during each event shows a high degree of variability between the events. In some of the larger events highly complex slip patterns are observed.
Resumo:
Sea-water intrusion is actively contaminating fresh groundwater reserves in the coastal aquifers of the Pioneer Valley,north-eastern Australia. A three-dimensional sea-water intrusion model has been developed using the MODHMS code to explore regional-scale processes and to aid assessment of management strategies for the system. A sea-water intrusion potential map, produced through analyses of the hydrochemistry, hydrology and hydrogeology, offsets model limitations by providing an alternative appraisal of susceptibility. Sea-water intrusion in the Pioneer Valley is not in equilibrium, and a potential exists for further landward shifts in the extent of saline groundwater. The model required consideration of tidal over-height (the additional hydraulic head at the coast produced by the action of tides), with over-height values in the range 0.5-0.9 m giving improved water-table predictions. The effect of the initial water-table condition dominated the sensitivity of the model to changes in the coastal hydraulic boundary condition. Several salination processes are probably occurring in the Pioneer Valley, rather than just simple landward sea-water advancement from modern sources of marine salts. The method of vertical discretisation (i.e. model-layer subdivision) was shown to introduce some errors in the prediction of watertable behaviour.
Resumo:
In this study, 3-D Lattice Solid Model (LSMearth or LSM) was extended by introducing particle-scale rotation. In the new model, for each 3-D particle, we introduce six degrees of freedom: Three for translational motion, and three for orientation. Six kinds of relative motions are permitted between two neighboring particles, and six interactions are transferred, i.e., radial, two shearing forces, twisting and two bending torques. By using quaternion algebra, relative rotation between two particles is decomposed into two sequence-independent rotations such that all interactions due to the relative motions between interactive rigid bodies can be uniquely decided. After incorporating this mechanism and introducing bond breaking under torsion and bending into the LSM, several tests on 2-D and 3-D rock failure under uni-axial compression are carried out. Compared with the simulations without the single particle rotational mechanism, the new simulation results match more closely experimental results of rock fracture and hence, are encouraging. Since more parameters are introduced, an approach for choosing the new parameters is presented.
Resumo:
Respiration is a complex activity. If the relationship between all neurological and skeletomuscular interactions was perfectly understood, an accurate dynamic model of the respiratory system could be developed and the interaction between different inputs and outputs could be investigated in a straightforward fashion. Unfortunately, this is not the case and does not appear to be viable at this time. In addition, the provision of appropriate sensor signals for such a model would be a considerable invasive task. Useful quantitative information with respect to respiratory performance can be gained from non-invasive monitoring of chest and abdomen motion. Currently available devices are not well suited in application for spirometric measurement for ambulatory monitoring. A sensor matrix measurement technique is investigated to identify suitable sensing elements with which to base an upper body surface measurement device that monitors respiration. This thesis is divided into two main areas of investigation; model based and geometrical based surface plethysmography. In the first instance, chapter 2 deals with an array of tactile sensors that are used as progression of existing and previously investigated volumetric measurement schemes based on models of respiration. Chapter 3 details a non-model based geometrical approach to surface (and hence volumetric) profile measurement. Later sections of the thesis concentrate upon the development of a functioning prototype sensor array. To broaden the application area the study has been conducted as it would be fore a generically configured sensor array. In experimental form the system performance on group estimation compares favourably with existing system on volumetric performance. In addition provides continuous transient measurement of respiratory motion within an acceptable accuracy using approximately 20 sensing elements. Because of the potential size and complexity of the system it is possible to deploy it as a fully mobile ambulatory monitoring device, which may be used outside of the laboratory. It provides a means by which to isolate coupled physiological functions and thus allows individual contributions to be analysed separately. Thus facilitating greater understanding of respiratory physiology and diagnostic capabilities. The outcome of the study is the basis for a three-dimensional surface contour sensing system that is suitable for respiratory function monitoring and has the prospect with future development to be incorporated into a garment based clinical tool.
Resumo:
To quantify changes in crystalline lens curvature, thickness, equatorial diameter, surface area, and volume during accommodation using a novel two-dimensional magnetic resonance imaging (MRI) paradigm to generate a complete three-dimensional crystalline lens surface model.
Resumo:
A real-time three-dimensional (3D) object sensing and reconstruction scheme is presented that can be applied on any arbitrary corporeal shape. Operation is demonstrated on several calibrated objects. The system uses curvature sensors based upon in-line fiber Bragg gratings encapsulated in a low-temperature curing synthetic silicone. New methods to quantitatively evaluate the performance of a 3D object-sensing scheme are developed and appraised. It is shown that the sensing scheme yields a volumetric error of 1% to 9%, depending on the object.
Resumo:
An array of in-line curvature sensors on a garment is used to monitor the thoracic and abdominal movements of a human during respiration. The results are used to obtain volumetric changes of the human torso in agreement with a spirometer used simultaneously at the mouth. The array of 40 in-line fiber Bragg gratings is used to produce 20 curvature sensors at different locations, each sensor consisting of two fiber Bragg gratings. The 20 curvature sensors and adjoining fiber are encapsulated into a low-temperature-cured synthetic silicone. The sensors are wavelength interrogated by a commercially available system from Moog Insensys, and the wavelength changes are calibrated to recover curvature. A three-dimensional algorithm is used to generate shape changes during respiration that allow the measurement of absolute volume changes at various sections of the torso. It is shown that the sensing scheme yields a volumetric error of 6%. Comparing the volume data obtained from the spirometer with the volume estimated with the synchronous data from the shape-sensing array yielded a correlation value 0.86 with a Pearson's correlation coefficient p <0.01.
Resumo:
The recent expansion of clinical applications for optical coherence tomography (OCT) is driving the development of approaches for consistent image acquisition. There is a simultaneous need for time-stable, easy-to-use imaging targets for calibration and standardization of OCT devices. We present calibration targets consisting of three-dimensional structures etched into nanoparticle-embedded resin. Spherical iron oxide nanoparticles with a predominant particle diameter of 400 nm were homogeneously dispersed in a two part polyurethane resin and allowed to harden overnight. These samples were then etched using a precision micromachining femtosecond laser with a center wavelength of 1026 nm, 100kHz repetition rate and 450 fs pulse duration. A series of lines in depth were etched, varying the percentage of inscription energy and speed of the translation stage moving the target with respect to the laser. Samples were imaged with a dual wavelength spectral-domain OCT system and point-spread function of nanoparticles within the target was measured.
Resumo:
This paper presents and demonstrates a method for using magnetic resonance imaging to measure local pressure of a fluid saturating a porous medium. The method is tested both in a static system of packed silica gel and in saturated sintered glass cylinders experiencing fluid flow. The fluid used contains 3% gas in the form of 3-μm average diameter gas filled 1,2-distearoyl-sn-glycero-3-phosphocholine (C18:0, MW: 790.16) liposomes suspended in 5% glycerol and 0.5% Methyl cellulose with water. Preliminary studies at 2.35 T demonstrate relative magnetic resonance signal changes of 20% per bar in bulk fluid for an echo time TE=40 ms, and 6-10% in consolidated porous media for TE=10 ms, over the range 0.8-1.8 bar for a spatial resolution of 0.1 mm3 and a temporal resolution of 30 s. The stability of this solution with relation to applied pressure and methods for improving sensitivity are discussed. © 2007 Elsevier Inc. All rights reserved.
Resumo:
This paper presents the digital imaging results of a collaborative research project working toward the generation of an on-line interactive digital image database of signs from ancient cuneiform tablets. An important aim of this project is the application of forensic analysis to the cuneiform symbols to identify scribal hands. Cuneiform tablets are amongst the earliest records of written communication, and could be considered as one of the original information technologies; an accessible, portable and robust medium for communication across distance and time. The earliest examples are up to 5,000 years old, and the writing technique remained in use for some 3,000 years. Unfortunately, only a small fraction of these tablets can be made available for display in museums and much important academic work has yet to be performed on the very large numbers of tablets to which there is necessarily restricted access. Our paper will describe the challenges encountered in the 2D image capture of a sample set of tablets held in the British Museum, explaining the motivation for attempting 3D imaging and the results of initial experiments scanning the smaller, more densely inscribed cuneiform tablets. We will also discuss the tractability of 3D digital capture, representation and manipulation, and investigate the requirements for scaleable data compression and transmission methods. Additional information can be found on the project website: www.cuneiform.net