976 resultados para Th2 Cells -- secretion
Resumo:
Induced oral tolerance to mucosal-exposed antigens in immunized animals is of particular interest for the development of immunotherapeutic approaches to human allergic diseases. This is a unique feature of mucosal surfaces which represent the main contact interface with the external environment. However, the influence of oral tolerance on specific and natural polyreactive IgA antibodies, the major defense mechanism of the mucosa, is unknown. We have shown that oral administration of an extract of the dust mite Dermatophagoides pteronyssinus (Dp) to primed mice caused down-regulation of IgE responses and an increase in tumor growth factor-ß secretion. In the present study, we observed that primed inbred female A/Sn mice (8 to 10 weeks old) fed by gavage a total weight of 1.0-mg Dp extract on the 6th, 7th and 8th days post-immunization presented normal secretion of IL-4 and IL-10 in gut-associated lymphoid tissue and a decreased production of interferon gamma induced by Dp in the draining lymph nodes (13,340 ± 3,519 vs 29,280 ± 2,971 pg/ml). Mice fed the Dp extract also showed higher levels of serum anti-Dp IgA antibodies and an increase of IgA-secreting cells in mesenteric lymph nodes (N = 10), reflecting an increase in total fecal IgA antibodies (N = 10). The levels of secretory anti-Dp IgA antibodies increased after re-immunization regardless of Dp extract feeding. Oral tolerance did not interfere with serum or secretory IgA antibody reactivity related to self and non-self antigens. These results suggest that induction of oral tolerance to a Dp extract in sensitized mice triggered different regulatory mechanisms which inhibited the IgE response and stimulated systemic and secretory IgA responses, preserving the natural polyreactive IgA antibody production.
Resumo:
T84 is an established cell line expressing an enterocyte phenotype whose permeability properties have been widely explored. Osmotic permeability (P OSM), hydraulic permeability (P HYDR) and transport-associated net water fluxes (J W-transp), as well as short-circuit current (I SC), transepithelial resistance (R T), and potential difference (deltaV T) were measured in T84 monolayers with the following results: P OSM 1.3 ± 0.1 cm.s-1 x 10-3; P HYDR 0.27 ± 0.02 cm.s-1; R T 2426 ± 109 omega.cm², and deltaV T 1.31 ± 0.38 mV. The effect of 50 µM 5,6-dichloro-1-ethyl-1,3-dihydro-2H-benzimidazol-2-one (DCEBIO), a "net Cl- secretory agent", on T84 cells was also studied. We confirm the reported important increase in I SC induced by DCEBIO which was associated here with a modest secretory deltaJ W-transp. The present results were compared with those reported using the same experimental approach applied to established cell lines originating from intestinal and renal epithelial cells (Caco-2, LLC-PK1 and RCCD-1). No clear association between P HYDR and R T could be demonstrated and high P HYDR values were observed in an electrically tight epithelium, supporting the view that a "water leaky" barrier is not necessarily an "electrically leaky" one. Furthermore, the modest secretory deltaJ W-transp was not consistent with previous results obtained with RCCD-1 cells stimulated with vasopressin (absorptive fluxes) or with T84 cells secreting water under the action of Escherichia coli heat stable enterotoxin. We conclude that, while the presence of aquaporins is necessary to dissipate an external osmotic gradient, coupling between water and ion transport cannot be explained by a simple and common underlying mechanism.
Resumo:
The trabecular meshwork (TM) is the main outflow pathway in the mammalian eye. Oxidative damage to TM cells has been suggested to be an important cause of impairment of TM functions, leading to deficient drainage of aqueous humor, with deleterious consequences to the eye. Transferrin, a metalloprotein involved in iron transport, has been characterized as an intrinsic eye protein. Since transferrin is implicated in the control of oxidative stress, the objective of the present study was to determine if a bovine TM cell line (CTOB) synthesizes and secretes transferrin. The CTOB cell line was cultured in the presence of 35S-methionine and the incubation medium was submitted to immunoprecipitation. Total RNAs from CTOB and isolated bovine TM (freshly isolated, incubated or not) were subjected to the reverse transcription-polymerase chain reaction and the amplification products were sequenced. Also, both CTOB and histological TM preparations were processed for transferrin immunolocalization. A labeled peptide of about 80 kDa, the expected size for transferrin, was immunopurified from CTOB samples obtained from the incubation assays. The reverse transcription-polymerase chain reaction and sequencing experiments detected the presence of transferrin mRNA in CTOB and isolated bovine TM. Reactivity to antibodies against transferrin was observed both in CTOB and TM. The results obtained in all of these experiments indicated that the TM is capable of synthesizing and secreting transferrin. The possible implications for the physiology of the eye are discussed.
Resumo:
The pancreatic acinar cell is a classical model for studies of secretion and signal transduction mechanisms. Because of the extensive endoplasmic reticulum and the large granular compartment, it has been possible - by direct measurements - to obtain considerable insights into intracellular Ca2+ handling under both normal and pathological conditions. Recent studies have also revealed important characteristics of stimulus-secretion coupling mechanisms in isolated human pancreatic acinar cells. The acinar cells are potentially dangerous because of the high intra-granular concentration of proteases, which become inappropriately activated in the human disease acute pancreatitis. This disease is due to toxic Ca2+ signals generated by excessive liberation of Ca2+ from both the endoplasmic reticulum and the secretory granules.
Resumo:
Sepsis is a systemic inflammatory response that can lead to tissue damage and death. In order to increase our understanding of sepsis, experimental models are needed that produce relevant immune and inflammatory responses during a septic event. We describe a lipopolysaccharide tolerance mouse model to characterize the cellular and molecular alterations of immune cells during sepsis. The model presents a typical lipopolysaccharide tolerance pattern in which tolerance is related to decreased production and secretion of cytokines after a subsequent exposure to a lethal dose of lipopolysaccharide. The initial lipopolysaccharide exposure also altered the expression patterns of cytokines and was followed by an 8- and a 1.5-fold increase in the T helper 1 and 2 cell subpopulations. Behavioral data indicate a decrease in spontaneous activity and an increase in body temperature following exposure to lipopolysaccharide. In contrast, tolerant animals maintained production of reactive oxygen species and nitric oxide when terminally challenged by cecal ligation and puncture (CLP). Survival study after CLP showed protection in tolerant compared to naive animals. Spleen mass increased in tolerant animals followed by increases of B lymphocytes and subpopulation Th1 cells. An increase in the number of stem cells was found in spleen and bone marrow. We also showed that administration of spleen or bone marrow cells from tolerant to naive animals transfers the acquired resistance status. In conclusion, lipopolysaccharide tolerance is a natural reprogramming of the immune system that increases the number of immune cells, particularly T helper 1 cells, and does not reduce oxidative stress.
Resumo:
Hyperuricemia is associated with renal stones, not only consisting of uric acid (UrAc) but also of calcium oxalate (CaOx). Glycosaminoglycans (GAGs) are well-known inhibitors of growth and aggregation of CaOx crystals. We analyzed the effect of noncrystalline UrAc on GAG synthesis in tubular distal cells. MDCK (Madin-Darby canine kidney) cells were exposed to noncrystalline UrAc (80 µg/mL) for 24 h. GAGs were labeled metabolically and characterized by agarose gel electrophoresis. The expression of proteoglycans and cyclooxygenase 2 (COX-2) was assessed by real-time PCR. Necrosis, apoptosis and prostaglandin E2 (PGE2) were determined by acridine orange, HOESCHT 33346, and ELISA, respectively. CaOx crystal endocytosis was evaluated by flow cytometry. Noncrystalline UrAc significantly decreased the synthesis and secretion of heparan sulfate into the culture medium (UrAc: 2127 ± 377; control: 4447 ± 730 cpm) and decreased the expression of perlecan core protein (UrAc: 0.61 ± 0.13; control: 1.07 ± 0.16 arbitrary units), but not versican. Noncrystalline UrAc did not induce necrosis or apoptosis, but significantly increased COX-2 and PGE2 production. The effects of noncrystalline UrAc on GAG synthesis could not be attributed to inflammatory actions because lipopolysaccharide, as the positive control, did not have the same effect. CaOx was significantly endocytosed by MDCK cells, but this endocytosis was inhibited by exposure to noncrystalline UrAc (control: 674.6 ± 4.6, CaOx: 724.2 ± 4.2, and UrAc + CaOx: 688.6 ± 5.4 geometric mean), perhaps allowing interaction with CaOx crystals. Our results indicate that UrAc decreases GAG synthesis in MDCK cells and this effect could be related to the formation of UrAc and CaOx stones.
Resumo:
The actions of thyroid hormone (TH) on pancreatic beta cells have not been thoroughly explored, with current knowledge being limited to the modulation of insulin secretion in response to glucose, and beta cell viability by regulation of pro-mitotic and pro-apoptotic factors. Therefore, the effects of TH on proinsulin gene expression are not known. This led us to measure: a) proinsulin mRNA expression, b) proinsulin transcripts and eEF1A protein binding to the actin cytoskeleton, c) actin cytoskeleton arrangement, and d) proinsulin mRNA poly(A) tail length modulation in INS-1E cells cultured in different media containing: i) normal fetal bovine serum - FBS (control); ii) normal FBS plus 1 µM or 10 nM T3, for 12 h, and iii) FBS depleted of TH for 24 h (Tx). A decrease in proinsulin mRNA content and attachment to the cytoskeleton were observed in hypothyroid (Tx) beta cells. The amount of eEF1A protein anchored to the cytoskeleton was also reduced in hypothyroidism, and it is worth mentioning that eEF1A is essential to attach transcripts to the cytoskeleton, which might modulate their stability and rate of translation. Proinsulin poly(A) tail length and cytoskeleton arrangement remained unchanged in hypothyroidism. T3 treatment of control cells for 12 h did not induce any changes in the parameters studied. The data indicate that TH is important for proinsulin mRNA expression and translation, since its total amount and attachment to the cytoskeleton are decreased in hypothyroid beta cells, providing evidence that effects of TH on carbohydrate metabolism also include the control of proinsulin gene expression.
Resumo:
A dendritic cell (DC)-based vaccine strategy could reduce the risk of recurrence and improve the survival of breast cancer patients. However, while therapy-induced apoptosis of hepatocellular and colorectal carcinoma cells can enhance maturation and antigen presentation of DCs, whether this effect occurs in breast cancer is currently unknown. In the present study, we investigated the effect of doxorubicin (ADM)-induced apoptotic MCF-7 breast cancer cells on the activation of DCs. ADM-induced apoptotic MCF-7 cells could effectively induce immature DC (iDC) maturation. The mean fluorescence intensity (MFI) of DC maturity marker CD83 was 23.3 in the ADM-induced apoptotic MCF-7 cell group compared with 8.5 in the MCF-7 cell group. The MFI of DC co-stimulatory marker CD86 and HLA-DR were also increased after iDCs were treated with ADM-induced apoptotic MCF-7 cells. Furthermore, the proliferating autologous T-lymphocytes increased from 14.2 to 40.3% after incubated with DCs induced by apoptotic MCF-7 cells. The secretion of interferon-γ by these T-lymphocytes was also increased. In addition, cell-cell interaction between apoptotic MCF-7 cells and iDCs, but not soluble factors released by apoptotic MCF-7 cells, was crucial for the maturation of iDCs. These findings constitute a novel in vitro DC-based vaccine strategy for the treatment of breast cancer by ADM-induced apoptotic MCF-7 cells.
Resumo:
Hypoxia inducible factor-1α (HIF-1α) is an important transcription factor, which plays a critical role in the formation of solid tumor and its microenviroment. The objective of the present study was to evaluate the expression and function of HIF-1α in human leukemia bone marrow stromal cells (BMSCs) and to identify the downstream targets of HIF-1α. HIF-1α expression was detected at both the RNA and protein levels using real-time PCR and immunohistochemistry, respectively. Vascular endothelial growth factor (VEGF) and stromal cell-derived factor-1α (SDF-1α) were detected in stromal cells by enzyme-linked immunosorbent assay. HIF-1α was blocked by constructing the lentiviral RNAi vector system and infecting the BMSCs. The Jurkat cell/BMSC co-cultured system was constructed by putting the two cells into the same suitable cultured media and conditions. Cell adhesion and secretion functions of stromal cells were evaluated after transfection with the lentiviral RNAi vector of HIF-1α. Increased HIF-1α mRNA and protein was detected in the nucleus of the acute myeloblastic and acute lymphoblastic leukemia compared with normal BMSCs. The lentiviral RANi vector for HIF-1α was successfully constructed and was applied to block the expression of HIF-1α. When HIF-1α of BMSCs was blocked, the expression of VEGF and SDF-1 secreted by stromal cells were decreased. When HIF-1α was blocked, the co-cultured Jurkat cell’s adhesion and migration functions were also decreased. Taken together, these results suggest that HIF-1α acts as an important transcription factor and can significantly affect the secretion and adhesion functions of leukemia BMSCs.
Resumo:
In the last several years, the use of dendritic cells has been studied as a therapeutic strategy against tumors. Dendritic cells can be pulsed with peptides or full-length protein, or they can be transfected with DNA or RNA. However, comparative studies suggest that transfecting dendritic cells with messenger RNA (mRNA) is superior to other antigen-loading techniques in generating immunocompetent dendritic cells. In the present study, we evaluated a new therapeutic strategy to fight tuberculosis using dendritic cells and macrophages transfected with Hsp65 mRNA. First, we demonstrated that antigen-presenting cells transfected with Hsp65 mRNA exhibit a higher level of expression of co-stimulatory molecules, suggesting that Hsp65 mRNA has immunostimulatory properties. We also demonstrated that spleen cells obtained from animals immunized with mock and Hsp65 mRNA-transfected dendritic cells were able to generate a mixed Th1/Th2 response with production not only of IFN-γ but also of IL-5 and IL-10. In contrast, cells recovered from mice immunized with Hsp65 mRNA-transfected macrophages were able to produce only IL-5. When mice were infected with Mycobacterium tuberculosis and treated with antigen-presenting cells transfected with Hsp65 mRNA (therapeutic immunization), we did not detect any decrease in the lung bacterial load or any preservation of the lung parenchyma, indicating the inability of transfected cells to confer curative effects against tuberculosis. In spite of the lack of therapeutic efficacy, this study reports for the first time the use of antigen-presenting cells transfected with mRNA in experimental tuberculosis.
Resumo:
Primary biliary cirrhosis (PBC) is a chronic and slowly progressive cholestatic liver disease of autoimmune etiology. A number of questions regarding its etiology are unclear. CD4+CD25+ regulatory T cells (Tregs) play a critical role in self-tolerance and, for unknown reasons, their relative number is reduced in PBC patients. B-cell-activating factor (BAFF) is a key survival factor during B-cell maturation and its concentration is increased in peripheral blood of PBC patients. It has been reported that activated B cells inhibit Treg cell proliferation and there are no BAFF receptors on Tregs. Therefore, we speculated that excessive BAFF may result in Treg reduction via B cells. To prove our hypothesis, we isolated Tregs and B cells from PBC and healthy donors. BAFF and IgM concentrations were then analyzed by ELISA and CD40, CD80, CD86, IL-10, and TGF-β expression in B cells and Tregs were measured by flow cytometry. BAFF up-regulated CD40, CD80, CD86, and IgM expression in B cells. However, BAFF had no direct effect on Treg cell apoptosis and cytokine secretion. Nonetheless, we observed that BAFF-activated B cells could induce Treg cell apoptosis and reduce IL-10 and TGF-β expression. We also showed that BAFF-activated CD4+ T cells had no effect on Treg apoptosis. Furthermore, we verified that bezafibrate, a hypolipidemic drug, can inhibit BAFF-induced Treg cell apoptosis. In conclusion, BAFF promotes Treg cell apoptosis and inhibits cytokine production by activating B cells in PBC patients. The results of this study suggest that inhibition of BAFF activation is a strategy for PBC treatment.
Resumo:
In the current literature, there is evidence that psychological factors can affect the incidence and progression of some cancers. Interleukin 6 (IL-6) is known to be elevated in individuals experiencing chronic stress and is also involved in oncogenesis and cancer progression. However, the precise mechanism of IL-6 induction by the stress-related hormone norepinephrine (NE) is not clear, and, furthermore, there are no reports about the effect of NE on IL-6 expression in gastric epithelial cells. In this study, we examined the effect of NE on IL-6 expression in immortalized human gastric epithelial cells (GES-1 cells). Using real-time PCR and enzyme-linked immunoassay, we demonstrated that NE can induce IL-6 mRNA and protein expression in GES-1 cells. The induction is through the β-adrenergic receptor-cAMP-protein kinase A pathway and mainly at the transcriptional level. Progressive 5′-deletions and site-directed mutagenesis of the parental construct show that, although activating-protein-1 (AP-1), cAMP-responsive element binding protein (CREB), CCAAT-enhancer binding protein-β (C/EBP-β), and nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) binding sites are all required in the basal transcription of IL-6, only AP-1 and CREB binding sites in the IL-6 promoter are required in NE-induced IL-6 expression. The results suggest that chronic stress may increase IL-6 secretion of human gastric epithelial cells, at least in part, by the stress-associated hormone norepinephrine, and provides basic data on stress and gastric cancer progression.
Resumo:
Sphingolipids are widely expressed molecules, which traditionally were considered to have majorly structural properties. Nowadays, however, they are implicated in a wide range of different biological processes. The bioactive lipid sphingosine 1-phosphate (S1P) has emerged during the past decade as one of the most studied molecules due to its proliferative and pro-migratory abilities both during normal physiology and in the pathology of a subset of different diseases. Migration and invasion of cancer cells require changes in cell behavior and modulation of the tissue microenvironment. Tumor aggressiveness is markedly enhanced by hypoxia, in which hypoxia inducible transcription factors 1-2α (HIF-1-2α) are activated to promote metabolism, proliferation and migration. Invasion requires degradation of the extracellular matrix (ECM) achieved by several degrading and remodeling enzymes. Matrix metalloproteinases (MMPs) are broadly expressed and well accepted as proteolytic enzymes with essential roles both in normal physiology and in pathology. Previously, S1P was shown to strongly evoke migration of follicular ML-1 thyroid cancer cells. The objective of this study was to further investigate and understand the mechanisms behind this regulation. In the first project it was demonstrated that S1P enhances the expression and activity of HIF-1α. S1P enhanced the expression of HIF-1α by increasing its synthesis and stability. The S1P-increased HIF-1α was mediated via S1P3, Gi/0, PI3K, PKCβI, ERK1/2, mTOR and translation factors p70S6K and eIF4E. Finally, it was shown that HIF-1α mediated S1P-induced migration. The ECM is constituted of a complex and coordinated assembly of many types of proteins. In order to be able to invade, cells need to break down the ECM, therefore several key players in this event were investigated in the second project. S1P increased the secretion and activity of MMP2 and MMP9 via S1P-receptor 1 and 3 and that these MMPs participated in the S1P-facilitated invasion of ML-1 cells. In this interplay, calpains and Rac1 were involved, both of which are crucial players in migration and invasion. The prognosis for some types of thyroid cancer is relatively good. However, there are forms of thyroid cancers, for which there are no treatments or the current available treatments are inefficient. Thus, new medical interventions are urgently needed. In the third project the significance of the S1P-receptor modulating drug FTY720, which is currently used for the treatment of multiple sclerosis (MS), was studied. The effect of FTY720 was tested on several thyroid cancer cell lines, and it inhibited the proliferation and invasion of all cancer cell lines tested. In ML-1 cells, FTY720 attenuated invasion by blocking signaling intermediates important for migration and invasion of the cells. Moreover, FTY720 inhibited the proliferation of ML-1 cells by increasing the expression of p21 and p27, hence, inducing cell arrest in G1 phase of the cell cycle. Thus, it can be suggested that FTY720 could be used in the treatment of thyroid cancer.
Resumo:
The balance of T helper (Th) cell differentiation is the fundamental process that ensures that the immune system functions correctly and effectively. The differentiation is a fine tuned event, the outcome of which is driven by activation of the T-cell in response to recognition of the specific antigen presented. The co-stimulatory signals from the surrounding cytokine milieu help to determine the outcome. An impairment in the differentiation processes may lead to an imbalance in immune responses and lead to immune-mediated pathologies. An over-representation of Th1 type cytokine producing cells leads to tissue-specific inflammation and autoimmunity, and excessive Th2 response is causative for atopy, asthma and allergy. The major factors of Th-cell differentiation and in the related disease mechanisms have been extensively studied, but the fine tuning of these processes by the other factors cannot be discarded. In the work presented in this thesis, the association of T-cell receptor costimulatory molecules CTLA4 and ICOS with autoimmune diabetes were studied. The underlying aspect of the study was to explore the polymorphism in these genes with the different disease rates observed in two geographically close populations. The main focus of this thesis was set on a GTPase of the immunity associated protein (GIMAP) family of small GTPases. GIMAP genes and proteins are differentially regulated during human Th-cell differentiation and have been linked to immune-mediated disorders. GIMAP4 is believed to contribute to the immunological balance via its role in T-cell survival. To elucidate the function of GIMAP4 and GIMAP5 and their role in human immunity, a study combining genetic association in different immunological diseases and complementing functional analyses was conducted. The study revealed interesting connections with the high susceptibility risk genes. In addition, the role of GIMAP4 during Th1-cell differentiation was investigated. A novel function of GIMAP4 in relation to cytokine secretion was discovered. Further assessment of GIMAP4 and GIMAP5 effect for the transcriptomic profile of differentiating Th1-cells revealed new insights for GIMAP4 and GIMAP5 function.
Resumo:
INTRODUCTION: Epithelial-to-mesenchymal transition (EMT) is a key event in renal fibrosis. The aims of the study were to evaluate acidosis induced EMT, transforming-growth-factor (TGF) β1 role and citrate effect on it. METHODS: HK2 cells (ATCC 2290) were cultured in DMEM/HAM F12 medium, pH 7.4. At 80% confluence, after 24 hr under serum free conditions, cells were distributed in three groups (24 hours): A) Control: pH 7.4, B) Acidosis: pH 7.0 and C) Calcium citrate (0.2 mmol/L) + pH 7.0. Change (Δ) of intracellular calcium concentration, basal and after Angiotensin II (10-6M) exposition, were measured to evaluate cellular performance. EMT was evaluated by the expression of α-smooth muscle actin (α-SMA) and E-cadherin by immunocytochemistry and/or Western blot. TGF-β1 secretion was determined by ELISA in cell supernatant. RESULTS: At pH 7.0 HK2 cells significantly reduced E-cadherin and increased α-SMA expression (EMT). Supernatant TGF-β1 levels were higher than in control group. Calcium citrate decreased acidosis induced EMT and improved cells performance, without reduction of TGF-β production. CONCLUSIONS: Acidosis induces EMT and secretion of TGF-β1 in tubular proximal cells in culture and citrate improves cellular performance and ameliorates acidosis induced EMT.