828 resultados para Textron, inc.
Resumo:
Current IEEE 802.11 wireless networks are vulnerable to session hijacking attacks as the existing standards fail to address the lack of authentication of management frames and network card addresses, and rely on loosely coupled state machines. Even the new WLAN security standard - IEEE 802.11i does not address these issues. In our previous work, we proposed two new techniques for improving detection of session hijacking attacks that are passive, computationally inexpensive, reliable, and have minimal impact on network performance. These techniques utilise unspoofable characteristics from the MAC protocol and the physical layer to enhance confidence in the intrusion detection process. This paper extends our earlier work and explores usability, robustness and accuracy of these intrusion detection techniques by applying them to eight distinct test scenarios. A correlation engine has also been introduced to maintain the false positives and false negatives at a manageable level. We also explore the process of selecting optimum thresholds for both detection techniques. For the purposes of our experiments, Snort-Wireless open source wireless intrusion detection system was extended to implement these new techniques and the correlation engine. Absence of any false negatives and low number of false positives in all eight test scenarios successfully demonstrated the effectiveness of the correlation engine and the accuracy of the detection techniques.
Resumo:
This paper presents a novel program annotation mechanism which enables students to obtain feedback from tutors on their programs in a far simpler and more efficient way than is possible with, for example, email. A common scenario with beginning students is to email tutors with copies of their malfunctioning programs. Unfortunately the emailed program often bears little resemblance to the program the student has been trying to make work; often it is incomplete, a different version and corrupted. We propose an annotation mechanism enabling students to simply and easily annotate their programs with comments asking for help. Similarly our mechanism enables tutors to view students’ programs and to reply to their comments in a simple and structured fashion. This means students can get frequent and timely feedback on their programs; tutors can provide such feedback efficiently, and hence students’ learning is greatly improved.