499 resultados para TRIGLYCERIDE
Resumo:
Background: Plasma triglyceride concentration is known to be a significant risk factor for cardiovascular disease (CVD). Previous studies have found that the level of triglycerides is strongly influenced by genetic factors. Methods: To identify quantitative trait loci influencing triglycerides, we conducted a genome-wide linkage scan on data from 485 Australian adult dizygotic twin pairs. Prior to linkage analysis, triglyceride values were adjusted for the effects of covariates including age, sex, time since last meal, time of blood collection (CT) and time to plasma separation. Results: The heritability estimate for ln(triglyceride) adjusted for all above fixed effects was 0.49. The highest multipoint LOD score observed was 2.94 (genome-wide p=0.049) on chromosome 7 (at 65cM). This 7p region contains several candidate genes. Two other regions with suggestive multipoint LOD scores were also identified on chromosome 4 (LOD score=2.26 at 62cM) and chromosome X (LOD score=2.01 at 81cM). Conclusions: The linkage peaks found represent newly identified regions for more detailed study, in particular the significant linkage observed on chromosome 7p13. \ (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
C-terminal acylation of Lys(37) with myristic (MYR; tetradecanoic acid), palmitic (PAL; hexadecanoic acid) and stearic (octadecanoic acid) fatty acids with or without N-terminal acetylation was employed to develop long-acting analogues of the glucoregulatory hormone, glucose-dependent insulinotropic polypeptide (GIP). All GIP analogues exhibited resistance to dipeptidylpeptidase-IV (DPP-IV) and significantly improved in vitro cAMP production and insulin secretion. Administration of GIP analogues to ob/ob mice significantly lowered plasma glucose-GIP(Lys(37)MYR), N-AcGIP(Lys(37)MYR) and GIP(Lys(37)PAL) increased plasma insulin concentrations. GIP(Lys(37)MYR) and N-AcGIP(Lys(37)MYR) elicited protracted glucose-lowering effects when administered 24h prior to an intraperitoneal glucose load. Daily administration of GIP(Lys(37)MYR) and N-AcGIP(Lys(37)MYR) to ob/ob mice for 24 days decreased glucose and significantly improved plasma insulin, glucose tolerance and beta-cell glucose responsiveness. Insulin sensitivity, pancreatic insulin content and triglyceride levels were not changed. These data demonstrate that C-terminal acylation particularly with myristic acid provides a class of stable, longer-acting forms of GIP for further evaluation in diabetes therapy.
Resumo:
A number of malignant tumors interact with the host to cause a syndrome of cachexia, characterized by extensive loss of adipose tissue and skeletal muscle mass, but with preservation of proteins in visceral tissues. Although anorexia is frequently present, the body composition changes in cancer cachexia cannot be explained by nutritional deprivation alone. Loss of skeletal muscle mass is a result of depression in protein synthesis and an increase in protein degradation. The main degradative pathway that has been found to have increased expression and activity in the skeletal muscle of cachectic patients is the ubiquitin-proteasome proteolytic pathway. Cachexia-inducing tumors produce catabolic factors such as proteolysis-inducing factor (PIF), a 24 kDa sulfated glycoprotein, which inhibit protein synthesis and stimulate degradation of intracellular proteins in skeletal muscle by inducing an increased expression of regulatory components of the ubiquitin-proteasome proteolytic pathway. While the oligosaccharide chains in PIF are required to initiate protein degradation the central polypeptide core may act as a growth and survival factor. Only cachexia-inducing tumors are capable of elaborating fully glycosylated PIF, and the selectivity of production possibly rests with the acquisition of the necessary glycosylating enzymes, rather than expressing the gene for the polypeptide core. Loss of adipose tissue is probably the result of an increase in catabolism rather than a defect in anabolism. A lipid mobilizing factor (LMF), identical with the plasma protein Zn-α2-glycoprotein (ZAG) is found in the urine of cachectic cancer patients and is produced by tumors causing a decrease in carcass lipid. LMF causes triglyceride hydrolysis in adipose tissue through a cyclic AMP-mediated process by interaction with a β3-adrenoreceptor. Thus, by producing circulating factors certain malignant tumors are able to interfere with host metabolism even without metastasis to that particular site. © 2004 Wiley-Liss, Inc.
Resumo:
Background/aims To investigate ethnic differences in retinal vascular function and their relationship to traditional risk indicators for cardiovascular disease (CVD). Methods A total of 90 normoglycaemic subjects (45 South Asian (SA) and 45 age- and gender-matched white Europeans (WEs)) were recruited for the present study. Retinal vessel reactivity to flickering light was assessed by means of the dynamic retinal vessel analyser according to a modified protocol. Fasting plasma glucose, triglycerides (TG), total, LDL and HDL cholesterol were also measured in all individuals. Results SA individuals showed higher fasting triglyceride (p=0.001) and lower HDL levels (p=0.007), leading to a higher TG:HDL-C ratio (p=0.001) than age-matched WE subjects. Additionally, in SAs, the retinal arterial reaction time in response to flicker stimulation was significantly longer in the last flicker cycle than in the WEs (p=0.039), and this change correlated positively with measured plasma TG levels (r=0.60; p=0.01). No such relationship was observed in the WEs (p>0.05). Conclusion Even in the absence of overt vascular disease, in otherwise healthy SAs there are potential signs of retinal vascular function impairment that correlates with established plasma markers for CVD risk.
Resumo:
Triglyceride concentrations and endotoxemia
Resumo:
OBJECTIVE: To investigate the mechanism of the lipid depletion by zinc-a(2)-glycoprotein (ZAG). DESIGN: Studies were conducted in the ob/ob mouse, or on isolated adipocytes from these animals or their lean counterparts. RESULTS: Treatment of these animals for 15 days with ZAG (100? µg, intravenously, daily) resulted in a reduction of body weight of 6.55? g compared with phosphate-buffered saline-treated controls, without a change in food or water intake, but with a 0.4?°C rise in rectal temperature. ZAG-treated mice had a 30% reduction in carcass fat mass and a twofold increase in weight of brown adipose tissue. Epididymal adipocytes from ZAG-treated mice showed an increased expression of ZAG and hormone-sensitive lipase (HSL), and this was maintained for a further 3 days in the absence of ZAG. There was an increased lipolytic response to isoproterenol, which was retained for 3 days in vitro in the absence of ZAG. Expression of HSL was also increased in subcutaneous and visceral adipose tissue, as was also adipose triglyceride lipase (ATGL). There was a rapid loss of labelled lipid from epididymal adipose tissue of ZAG-treated mice, but not from the other depots, reflecting the difference in sensitivity to lipolytic stimuli. The increased expression of HSL and ATGL may involve the extracellular signal-regulated kinase (ERK) pathway, as the active (phospho) form was upregulated in all adipose depots after ZAG administration, whereas in vitro studies showed induction of HSL and ATGL by ZAG to be attenuated by PD98059, an inhibitor of the ERK pathway. CONCLUSION: These results suggest that ZAG not only induces direct lipolysis, but also sensitizes adipose tissue to other lipolytic stimuli.
Resumo:
OBJECTIVE: To investigate the anti-obesity effect of the adipokine zinc-a(2)-glycoprotein (ZAG) in rats and the mechanism of this effect. SUBJECTS: Mature male Wistar rats (540 ± 83 g) were administered human recombinant ZAG (50 µg per 100 g body weight given intravenously daily) for 10 days, while control animals received an equal volume of phosphate-buffered saline (PBS). RESULTS: Animals treated with ZAG showed a progressive decrease in body weight, without a decrease in food and water intake, but with a 0.4 °C rise in body temperature. Body composition analysis showed loss of adipose tissue, but an increase in lean body mass. The loss of fat was due to an increase in lipolysis as shown by a 50% elevation of plasma glycerol, accompanied by increased utilization of non-esterified fatty acids, as evidenced by the 55% decrease in plasma levels. Plasma levels of glucose and triglycerides were also reduced by 36-37% and there was increased expression of the glucose transporter 4 in both skeletal muscle and adipose tissue. Expression of the lipolytic enzymes adipose triglyceride lipase and hormone-sensitive lipase in the white adipose tissue (WAT) were increased twofold after ZAG administration. There was almost a twofold increased expression of uncoupling proteins 1 and 3 in brown adipose tissue and WAT, which would contribute to increased substrate utilization. Administration of ZAG increased ZAG expression twofold in the gastrocnemius muscle, BAT and WAT, which was probably necessary for its biological effect. CONCLUSION: These results show that ZAG produces increased lipid mobilization and utilization in the rat.
Resumo:
Novel macroporous solid bases have been developed as alternative clean technologies to existing commercial homogeneous catalysts for the production of biodiesel from triglycerides; the latter suffer process disadvantages including complex separation and associated saponification and engine corrosion, and are unsuitable for continuous operation. To this end, tuneable macroporous MgAl hydrotalcites have been prepared by an alkali-free route and characterised by TGA, XRD, SEM and XPS. The macropore architecture improves diffusion of bulky triglyceride molecules to the active base sites, increasing activity. Lamellar and macroporous hydrotalcites will be compared for the transesterification of both model and plant oil feedstocks, and structure-reactivity relations identified.
Resumo:
There is a pressing need for sustainable transportation fuels to combat both climate change and dwindling fossil fuel reserves. Biodiesel, synthesised from non-food plant (e.g., Jatropha curcas) or algal crops is one possible solution, but its energy efficient production requires design of new solid catalysts optimized for the bulky triglyceride and fatty acid feedstocks. Here we report on the synthesis of hierarchical macroporous-mesoporous silica and alumina architectures, and their subsequent functionalization by propylsulfonic acid groups or alkaline earth oxides to generate novel solid acid and base catalysts. These materials possess high surface areas and well-defined, interconnected macro-mesopore networks with respective narrow pore size distributions tuneable around 300 nm and 5 nm. Their high conductivity and improved mass transport characteristics enhance activity towards transesterification of bulky tricaprylin and palmitic acid esterification, over mesoporous analogues. This opens the way to the wider application of hierarchical catalysts in biofuel synthesis and biomass conversion.
Resumo:
The combination of dwindling oil reserves and growing concerns over carbon dioxide emissions and associated climate change is driving the urgent development of clean, sustainable energy supplies. Biodiesel is a non-toxic and biodegradable fuel, with the potential for closed CO2 cycles and thus vastly reduced carbon footprints compared with petroleum. However, current manufacturing routes employing soluble catalysts are very energy inefficient, with their removal necessitating an energy intensive separation to purify biodiesel, which in turn produces copious amounts of contaminated aqueous waste. The introduction of non-food based feedstocks and technical advances in heterogeneous catalyst and reactor design are required to ensure that biodiesel remains a key player in the renewable energy sector for the 21st century. Here we report on the development of tuneable solid acid and bases for biodiesel synthesis, which offer several process advantages by eliminating the quenching step and allowing operation in a continuous reactor. Significant progress has been made towards developing tuneable solid base catalysts for biodiesel synthesis, including Li/CaO [1], Mg-Al hydrotalcites [2] and calcined dolomite [3] which exhibit excellent activity for triglyceride transesterification. However, the effects of solid base strength on catalytic activity in biodiesel synthesis remains poorly understood, hampering material optimisation and commercial exploitation. To improve our understanding of factors influencing solid base catalysts for biodiesel synthesis, we have applied a simple spectroscopic method for the quantitative determination of surface basicity which is independent of adsorption probes. Such measurements reveal how the morphology and basicity of MgO nanocrystals correlate with their biodiesel synthesis activity [4]. While diverse solid acids and bases have been investigated for TAG transesterification, the micro and mesoporous nature of catalyst systems investigated to date are not optimal for the diffusion of bulky and viscous C16-C18 TAGs typical of plant oils. The final part of this presentation will address the benefits of designing porous networks comprising interconnected hierarchical macroporous and mesoporous channels (Figure 1) to enhance mass-transport properties of viscous plant oils during biodiesel synthesis [5]. References: [1] R.S. Watkins, A.F. Lee, K. Wilson, Green Chem., 2004, 6, 335. [2]D.G. Cantrell, L.J. Gillie, A.F. Lee and K. Wilson, Appl. Catal. A, 2005, 287,183. [3] C. Hardacre, A.F. Lee, J.M. Montero, L. Shellard, K.Wilson, Green Chem., 2008, 10, 654. [4] J.M. Montero, P.L. Gai, K. Wilson, A.F. Lee, Green Chem., 2009, 11, 265. [5] J. Dhainaut, J.-P. Dacquin, A.F. Lee, K. Wilson, Green Chem., 2010, 12, 296.
Resumo:
Cs exchanged silicotungstic acid catalysts of general formula CsxH4−xSiW12O40 (x = 0.8–4) have been synthesised and characterised by a range of techniques including elemental analysis, N2 gas adsorption, XRD, XPS and NH3 flow calorimetry. Cs substitution promotes recrystallisation of the parent H4SiW12O40 polyoxometallate to the Cs4 salt, via a stable intermediate phase formed at compositions between Cs0.8–2.8. This recrystallisation is accompanied by a pronounced rise and subsequent fall in porosity, with a maximum mesopore volume obtained for materials containing 2.8 Cs atoms per Keggin unit. Calorimetry reveals all CsxH4−xSiW12O40 are strong acids, with ΔHθads(NH3) ranging from −142 to 116 kJ mol−1 with increasing Cs content, consistently weaker than their phosphotungstic analogues. CsxH4−xSiW12O40 materials are active catalysts for both C4 and C8 triglyceride transesterification, and palmitic acid esterification with methanol. For loadings ≤0.8 Cs per Keggin, (trans)esterification activity arises from homogeneous contributions. However, higher degrees of substitution result in entirely heterogeneous catalysis, with rates proportional to the density of accessible acid sites present within mesopores.
Resumo:
Biofuels are promising renewable energy sources and can be derived from vegetable oil feedstocks. Although solid catalysts show great promise in plant oil triglyceride transesterification to biodiesel, the identification of active sites and operating surface nanostructures created during their processing is essential for the development of efficient heterogeneous catalysts. Systematic, direct observations of dynamic MgO nanocatalysts from a magnesium hydroxide-methoxide precursor were performed under controlled calcination conditions using novel in situ aberration corrected-transmission electron microscopy at the 0.1 nm level and quantified with catalytic reactivity and physico-chemical studies. Surface structural modifications and the evolution of extended atomic scale glide defects implicate coplanar anion vacancies in active sites in the transesterification of triglycerides to biodiesel. The linear correlation between surface defect density (and therefore polarisability) and activity affords a simple means to fine tune new, energy efficient nanocatalysts for biofuel synthesis. © 2009 Springer Science+Business Media, LLC.
Resumo:
The approach of all ophthalmologists, diabetologists and general practitioners seeing patients with diabetic retinopathy should be that good control of blood glucose, blood pressure and plasma lipids are all essential components of modern medical management. The more recent data on the use of fenofibrate in the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) and The Action to Control Cardiovascular Risk in Diabetes (ACCORD) Eye studies is reviewed. In FIELD, fenofibrate (200 mg/day) reduced the requirements for laser therapy and prevented disease progression in patients with pre-existing diabetic retinopathy. In ACCORD Eye, fenofibrate (160 mg daily) with simvastatin resulted in a 40% reduction in the odds of retinopathy progressing over 4 years, compared with simvastatin alone. This occurred with an increase in HDL-cholesterol and a decrease in the serum triglyceride level in the fenofibrate group, as compared with the placebo group, and was independent of glycaemic control. We believe fenofibrate is effective in preventing progression of established diabetic retinopathy in type 2 diabetes and should be considered for patients with pre-proliferative diabetic retinopathy and/or diabetic maculopathy, particularly in those with macular oedema requiring laser. © 2011 Macmillan Publishers Limited All rights reserved.
Resumo:
The ability of Cu and Sn to promote the performance of a 20% Ni/Al2O3 catalyst in the deoxygenation of lipids to fuel-like hydrocarbons was investigated using model triglyceride and fatty acid feeds, as well as algal lipids. In the semi-batch deoxygenation of tristearin at 260 °C a pronounced promotional effect was observed, a 20% Ni-5% Cu/Al2O3 catalyst affording both higher conversion (97%) and selectivity to C10-C17 alkanes (99%) in comparison with unpromoted 20% Ni/Al2O3 (27% conversion and 87% selectivity to C10-C17). In the same reaction at 350 °C, a 20% Ni-1% Sn/Al2O3 catalyst afforded the best results, giving yields of C10-C17 and C17 of 97% and 55%, respectively, which contrasts with the corresponding values of 87 and 21% obtained over 20% Ni/Al2O3. Equally encouraging results were obtained in the semi-batch deoxygenation of stearic acid at 300 °C, in which the 20% Ni-5% Cu/Al2O3 catalyst afforded the highest yields of C10-C17 and C17. Experiments were also conducted at 260 °C in a fixed bed reactor using triolein − a model unsaturated triglyceride − as the feed. While both 20% Ni/Al2O3 and 20% Ni-5% Cu/Al2O3 achieved quantitative yields of diesel-like hydrocarbons at all reaction times sampled, the Cu-promoted catalyst exhibited higher selectivity to longer chain hydrocarbons, a phenomenon which was also observed in experiments involving algal lipids as the feed. Characterization of fresh and spent catalysts indicates that Cu enhances the reducibility of Ni and suppresses both cracking reactions and coke-induced deactivation.
Resumo:
Purpose: Metabolic syndrome (MetS) is associated with the development of cardiovascular disease (CVD) and type 2 diabetes. Decreases in circulating adiponectin and ghrelin have been associated with MetS. Our primary aim was to evaluate the relationship of MetS with adiponectin and ghrelin for Cuban Americans with and without type 2 diabetes. Methods: Cross-sectional study of 367 adults, self identified as Cuban extraction and randomly recruited from a mailing list of Broward and Miami-Dade counties. Fasted whole blood for adiponectin (ADPN) was collected using K3EDTA tubes and measured by ELISA. Ghrelin was assayed with fasted blood plasma by Enzyme Immunometric Assay. MetS and 10-year risk for coronary heart disease (CHD) were determined using the ATP III criteria. Results: Adiponectin (F=51.8, R2 =0.21 p<0.001) and ghrelin (F=12.77, R 2 =0.06, p<0.001) differed by diabetes status (ANOVA) not age and gender. In stepwise linear regression models triglyceride levels ≥ 150 mg/dL negatively corresponded (coefficient = -0.23) with ghrelin levels for persons without diabetes (F=7.45, R2 =0.053, p=0.007); abdominal obesity and fasting plasma glucose predicted high sensitivity C-reactive protein (hs-CRP) for persons with and without diabetes (F=16.3, R2 = 0.144, p <0.001). Conclusion: Low ghrelin levels were associated with MetS regardless of diabetes status. High adiponectin levels were related to a low probability for those without diabetes only. There was a positive association of hs-CRP with BMI, MetS and number of MetS components.