923 resultados para TRANSPORT PROPERTIES


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Some dynamical properties of an ensemble of trajectories of individual (non-interacting) classical particles of mass m and charge q interacting with a time-dependent electric field and suffering the action of a constant magnetic field are studied. Depending on both the amplitude of oscillation of the electric field and the intensity of the magnetic field, the phase space of the model can either exhibit: (i) regular behavior or (ii) a mixed structure, with periodic islands of regular motion, chaotic seas characterized by positive Lyapunov exponents, and invariant Kolmogorov-Arnold-Moser curves preventing the particle to reach unbounded energy. We define an escape window in the chaotic sea and study the transport properties for chaotic orbits along the phase space by the use of scaling formalism. Our results show that the escape distribution and the survival probability obey homogeneous functions characterized by critical exponents and present universal behavior under appropriate scaling transformations. We show the survival probability decays exponentially for small iterations changing to a slower power law decay for large time, therefore, characterizing clearly the effects of stickiness of the islands and invariant tori. For the range of parameters used, our results show that the crossover from fast to slow decay obeys a power law and the behavior of survival orbits is scaling invariant. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4772997]

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The preparation of the ZrO(2):8 mol % Y(2)O(3)/NiO (YSZ/NiO) composites by a modified liquid mixture technique is reported. Nanometric NiO particles dispersed over the yttria-stabilized zirconia (YSZ) were prepared, resulting in dense sintered specimens with no solid solution formation between the oxides. Such a feature allowed for the electrical characterization of the composites in a wide range of relative volume fraction, temperature, and oxygen partial pressure. The main results indicate that the composites have high electrical conductivity, and the transport properties in these mixed ionic-electronic (MIEC) composites are strongly dependent on the relative volume fraction of the phases, microstructure, and temperature. These parameters should hence be taken into consideration for the optimized design of MIEC composites for electrochemical applications. In this context, the composite was reduced under H(2) for the preparation of high-conductivity YSZ/Ni cermets for use as solid oxide fuel cell anode material with relatively low metal content. (c) 2005 the Electrochemical Society. [DOI:10.1149/1.2149312] All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Multi-walled carbon nanotubes (MWNT) were produced by chemical vapor deposition using yttria-stabilized zirconia/nickel (YSZ/Ni) catalysts. The catalysts were obtained by a liquid mixture technique that resulted in fine dispersed nanoparticles of NiO supported in the YSZ matrix. High quality MWNT having smooth walls, few defects, and low amounts of by-products such as amorphous carbon were obtained, even from catalysts with large Ni concentrations (> 50 wt.%). By adjusting the experimental parameters, such as flux of the carbon precursor (ethylene) and Ni concentration, both the MWNT morphology and the process yield could be controlled. The resulting YSZ/Ni/MWNT composites can be interesting due to their mixed ionic-electronic transport properties, which could be useful in electrochemical applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Superconductor films of the BSCCO system have been grown by dip coating technique with good success. The chemical method allows us to grow high temperature superconductor thin films to get better control of stoichiometry, large areas and is cheaper than other methods. There is a great technological interest in growth oriented superconductor films due anisotropic characteristics of superconductor materials of high critical temperature, specifically the cuprates, as we know that the orientation may increase the electrical transport properties. Based on this, the polymeric precursor method has been used to obtain thin films of the BSCCO system. In this work we have applied that method together with the deposition technique known as dip coating to obtain Bi-based superconductor thin films, specifically, Bi1.6Pb0.4Sr2.0C2.0Cu3.0Ox+8, also known as 2223 phase with a critical temperature around 110 K. The films with multilayers have been grown on crystalline substrates of LaAlO3 and orientated (100) after being heat treated around 790 degrees C - 820 degrees C in lapse time of 1 hour in a controlled atmosphere. XRD measurements have shown the presence of a crystalline phase 2212 with a critical temperature around 85 K with (001) orientation, as well as a small fraction of 2223 phase. SEM has shown a low uniformity and some cracks that maybe related to the applied heat treatment. WDS has also been used to study the films composition. Different heat treatments have been used with the aim to increase the percentage of 2223 phase. Measurements of resistivity confirmed the presence of at least two crystalline phases, 2212 and 2223, with T-c around 85 K and 110 K, respectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Substantial improvements in the selectivity of electrochemical measurements of trace nucleic adds are obtained by using membrane-covered carbon disk electrodes. Access to the electrode surface can be manipulated via a judicious choice of the membrane molecular weight cutoff (MWCO). The resulting separation step, performed in situ at the electrode surface, adds a new dimension of selectivity based on molecular size to electroanalysis of nucleic acids, Transport properties are evaluated with respect to the oligonucleotide length and membrane MWCO. A highly selective response is observed for synthetic oligonucleotides in the presence of otherwise interfering chromosomal DNAs. Discrimination among oligonucleotides of different lengths is also possible, Short accumulation periods (1-5 min) are sufficient for convenient measurements of low milligram per liter concentrations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thin films of undoped and Sb-doped SnO2 have been prepared by a sol-gel dip-coating technique. For the high doping level (2-3 mol% Sb) n-type degenerate conduction is expected, however, measurements of resistance as a function of temperature show that doped samples exhibit strong electron trapping, with capture levels at 39 and 81 meV. Heating in a vacuum and irradiation with UV monochromatic light (305 nm) improve the electrical characteristics, decreasing the carrier capture at low temperature. This suggests an oxygen related level, which can be eliminated by a photodesorption process. Absorption spectral dependence indicates an indirect bandgap transition with Eg ≅ 3.5 eV. Current-voltage characteristics indicate a thermionic emission mechanism through interfacial states.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Gross-Pitaevskii equation for Bose-Einstein condensation (BEC) in two space dimensions under the action of a harmonic oscillator trap potential for bosonic atoms with attractive and repulsive interparticle interactions was numerically studied by using time-dependent and time-independent approaches. In both cases, numerical difficulty appeared for large nonlinearity. Nonetheless, the solution of the time-dependent approach exhibited intrinsic oscillation with time iteration which is independent of space and time steps used in discretization.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The in-medium influence on π0 photoproduction from spin zero nuclei is carefully studied in the GeV range using a straightforward Monte Carlo analysis. The calculation takes into account the relativistic nuclear recoil for coherent mechanisms (electromagnetic and nuclear amplitudes) plus a time dependent multi-collisional intranuclear cascade approach (MCMC) to describe the transport properties of mesons produced in the surroundings of the nucleon. A detailed analysis of the meson energy spectra for the photoproduction on 12C at 5.5 GeV indicates that both the Coulomb and nuclear coherent events are associated with a small energy transfer to the nucleus (≲ 5 MeV), while the contribution of the nuclear incoherent mechanism is vanishing small within this kinematical range. The angular distributions are dominated by the Primakoff peak at extreme forward angles, with the nuclear incoherent process being the most important contribution above θπ0 ≲ 20. Such consistent Monte Carlo approach provides a suitable method to clean up nuclear backgrounds in some recent high precision experiments, such as the PrimEx experiment at the Jefferson Laboratory Facility.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present paper concerns on the estimative of the pressure loss and entropy variation in an isothermal fluid flow, considering real gas effects. The 1D formulation is based on the isothermal compressibility module and on the thermal expansion coefficient in order to be applicable for both gas and liquid as pure substances. It is emphasized on the simple methodology description, which establishes a relationship between the formulation adopted for ideal gas and another considering real gas effects. A computational procedure has been developed, which can be used to determine the flow properties in duct with a variable area, where real gas behavior is significant. In order to obtain quantitative results, three virial coefficients for Helium equation of state are employed to determine the percentage difference in pressure and entropy obtained from different formulations. Results are presented graphically in the form of real gas correction factors, which can be applied to perfect gas calculations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using molecular dynamics simulations, we analyze the effects of artificial periodic arrays of pinning sites on the critical current of superconducting thin films as a function of vortex density. We analyze two types of periodic pinning array: hexagonal and Kagomé. For the Kagome pinning network we make calculations using two directions of transport current: along and perpendicular to the main axis of the lattice. Our results show that the hexagonal pinning array presents higher critical currents than the Kagomé and random pinning configuration for all vortex densities. In addition, the Kagomé networks show anisotropy in their transport properties. © 2012 Springer Science+Business Media, LLC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We analyze the vortex dynamics in superconducting thin films with a periodic array of pinning centers. In particular, we study the effect of anisotropy for a Kagomé pinning network when longitudinal and transverse transport currents are applied. By solving the equations of motion for the vortex array numerically at zero temperature, we find different phases for the vortex dynamics, depending on the pinning and driving force. An unusual sequence of peaks for driving force along and perpendicular to the main lattice axes is observed for the differential resistance, reflecting the anisotropy of the transport properties and the complex behavior of the vortex system. This behavior may be understood in terms of interstitial pinning vacancies, which create channels of vortices with different pinning strengths. © 2012 Springer Science+Business Media, LLC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)