989 resultados para TRACE-ELEMENT CONCENTRATIONS
Resumo:
According to data from Cruise 54 of R/V Akademik Mstislav Keldysh (September 2007) results of geochemical studies of redox processes in bottom sediments from the Ob River mouth area as applied to redox indicator elements (such as manganese, iron, and sulfur) are presented. Parameters of bottom sediments and distribution of these elements evidence not only a significant role of mixing processes at an geochemical profile of bottom sediments in the estuary but also a role of postsedimentation (diagenetic) processes.
Resumo:
Trace element contents in different types of recent botoom sediments of the Indian Ocean are given. Sediment samples were obtained during cruises of the P.P. Shirshov Institute of Oceanology, Moscow.
Resumo:
Middle Miocene to Holocene fine-grained argillaceous sediments (clays, claystones/muds, and mudstones), which volumetrically dominated the sediment recovery in the Woodlark Basin during Leg 180, were chemically analyzed for major elements, trace elements, and some rare earth elements by X-ray fluorescence. Selected samples also underwent X-ray diffraction (XRD) analysis for mineral determination. The results shed light on sediment provenance when combined with shipboard sediment descriptions, smear slide study, and XRD. The oldest sediments recovered (Site 1108) of middle-late Miocene age include volcanogenic muds with distinctive high MgO and K2O, indicative of a relatively basic calc-alkaline source related to an inferred Miocene forearc succession. The forearc basement, composed of diabase and basalt, was locally exposed (Site 1109) and eroded in the late Miocene (<5.4-9.93 Ma), giving rise to fluvial conglomerates (Sites 1109, 1115, and 1118). Chemically distinctive fine-grained claystones and siltstones (with relatively high Ti, low K) are compatible with derivation from tropically weathered basic igneous rocks, correlated with the Paleogene Papuan ophiolite. Overlying latest Miocene-Pleistocene fine-grained sediments throughout the Woodlark Basin were partly derived from calc-alkaline volcanic sources. However, relatively high abundances of Al2O3 and related element oxides (K2O and Na2O) and trace elements (e.g., Rb and Y) reflect an additional terrigenous input throughout the basin, correlated with pelitic metamorphic rocks exposed on Papua New Guinea and adjacent areas. In addition, sporadic high abundances of Cr and Ni, some other trace metals, and related minerals (talc, crysotile, and chlorite) reflect input from an ophiolitic terrain dominated by ultramafic rocks, correlated with the Paleogene Papuan ophiolite. The source areas possibly included serpentinized ultramafic ophiolitic rocks exposed in the Papua New Guinea interior highlands. Chemical evidence further indicates that fine-grained terrigenous sediment reached the Woodlark Basin throughout its entire late Miocene-Holocene history. Distinctive high-K volcanogenic muds rich in tephra and volcanic ash layers that appear at <2.3 Ma (Sites 1109 and 1115) are indicative of high-K calc-alkaline volcanic centers, possibly located in the Dawson Strait, Moresby Strait, or Dobu Seamount area. Chemical diagenesis of fine-grained sediments within the Woodlark Basin is reflected in clay neomorphism and localized formation of minerals including dolomite, ankerite, and zeolite but has had little effect on the bulk chemical composition of most samples.
Resumo:
Character of metal accumulation in fractions of thalli of four species of marine green benthos algae under background and enhanced (0.3 mg/l) element concentrations in the environment was studied in short-term 24-hour experiments. Algae were shown to hold polysaccharide and protein mechanisms of metal accumulation. Variance analysis was applied to evaluate taxonomic and ecological features of metal distribution in fractions of thalli.
Resumo:
Geochemical analyses have been performed on sediment samples collected during Ocean Drilling Program Leg 178 from the continental rise and outer continental shelf of the Antarctic Peninsula. A suite of 21 trace elements was measured by neutron activation analysis in 39 sediment samples, and major element oxides were determined in 67 samples by electron microprobe analyses of fused glass beads. These geochemical data, combined with the X-ray diffraction and X-ray fluorescence data from shipboard analyses, provide a reasonable estimate of the mineral and chemical composition of sediments deposited along the western margin of the Antarctic Peninsula.
Resumo:
Climate responses and changes in marine environments during the last deglaciation have been controversial and few paleoceanographic data are available from the tropical South Pacific, though this region is crucial in the investigations of ocean-atmosphere interactions. Integrated Ocean Drilling Program Expedition 310 was conducted to establish the time course of the postglacial sea-level rise at Tahiti in the South Pacific. A principal objective of this expedition was to examine the variation of marine environments during the last deglaciation. As fossil Porites coral is ideal for assessing past marine environments, we selected only Porites specimens from the many coral specimens retrieved, examined them by XRD, and dated them by the 14C method. In all, we obtained 17 pristine Porites specimens composed of only aragonite with ages from 15 to 9 ka. Then, we measured Mg/Ca, Ba/Ca, and U/Ca ratios and Cd contents as proxies for upwelling and sea surface temperature. Higher Ba/Ca ratios and Cd content together with lower reconstructed SSTs using U/Ca ratios in the coral specimens between 12.6 and 9.8 cal ka compared to around 15 cal ka suggest that upwelling and/or entrainment of subsurface water into mixed layer was enhanced around Tahiti during this period. This finding is consistent with previous reports and supports the idea that the South Pacific was characterized by La Niña-like conditions at least from 12.6 to 9.8 cal ka.
Resumo:
Detailed 14C AMS data and isotope based stratigraphies from high-resolution paleoceanographic records for the last 22 ka of cores from the upper continental slope off NE Brazil reveal sedimentation rates of up to 100 cm per 1000 yr. Variations in the sediment composition relate to changes in the input of terrigenous material. The sedimentation is controlled by sea level and by the climatic regime of the hinterland. Short-term changes in the tropical wind field may act as a climatic trigger. The zonality of the SE trades was probably increased and the monsoonal activity over Africa reduced during the Younger Dryas period.