953 resultados para TNF RECEPTORS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Suite à une infection avec le protozoaire Leishmania major (L. major), les souris sensibles de souche BALB/c développent des lésions progressives associées à une maturation des cellules CD4+ TH2 sécrétant de l'IL-4. A l'inverse, les souris résistantes de souche C57BL/6 guérissent à terme, sous l'influence de l'expansion des cellules CD4+ TH1 produisant de l'IFNy qui a un effet synergique avec le TNF ("tumor necrosis factor") sur l'activation des macrophages et leur fonction leishmanicide. Lors de notre étude nous avons montré que des souris C57BL/6 doublement déficientes en TNF et FasL ("Fas ligand") infectées par L. major ne guérissaient ni leur lésions ni ne contrôlaient la réplication de parasites malgré une réponse de type TH1. Bien que l'activité de synthétase inductible de l'oxyde nitrique ("iNOs") soit comparable chez les souris doublement ou simplement déficientes, seules celles déficientes en FasL ont démontré une incapacité à contrôler la réplication parasitaire. De surcroît il est apparu que le FasL a un effet synergique avec l'IFNy. L'adjonction de FasL à une culture cellulaire de macrophages stimulés par l'IFNy conduit à une activation de ces cellules. Celle-ci est démontrée par l'augmentation de la production de TNF et de NO par les macrophages ainsi que par l'élimination des parasites intracellulaires par ces mêmes cellules. Alors que le FasL et l'IFNy semblent essentiels au contrôle de la réplication des pathogènes intracellulaires, la contribution de TNF s'oriente davantage vers le contrôle de l'inflammation. L'activation macrophagique via Fas précède la mort cellulaire qui survient quelques jours plus tard. Cette mort cellulaire programmée était indépendante de la cascade enzymatique des caspases, au vu de l'absence d'effet de l'inhibiteur non-spécifique ZVAD-fmk des caspases. Ces résultats suggèrent que l'interaction Fas-FasL agit comme une costimulation nécessaire à une activation efficace des macrophages, la mort cellulaire survenant consécutivement à l'activation des macrophages.¦-¦Upon infection with the protozoan parasite Leishmania major (L. major), susceptible BALB/c mice develop non healing lesions associated with the maturation of CD4+ TH2 cells secreting IL-4. In contrast, resistant C57BL/6 mice are able to heal their lesions, because of CD4+ TH1 cell expansion and production of high levels of IFNy, which synergizes with tumour necrosis factor (TNF) in activating macrophages to their microbicidal state. In our study we showed that C57BL/6 mice lacking both TNF and Fas ligand (FasL) infected with L. major neither resolved their lesions nor controlled L. major replication despite a strong TH1 response. Although comparable inducible nitric oxide synthase (iNOs) was measured in single or double deficient mice, only mice deficient in FasL failed to control the parasite replication. Moreover FasL synergized with IFNy for the induction of leishmanicidal activity within macrophages infected with L. major in vitro. Addition of FasL to IFNy stimulated macrophages led to their activation, as reflected by the secretion of tumour necrosis factor and nitrite oxide, as well as the induction of their microbicidal activity, resulting in the killing of intracellular L. major. While FasL along with IFNy and iNOs appeared to be essential for the complete control of intracellular pathogen replication, the contribution of TNF appeared more important in controlling the inflammation on the site of infection. Macrophage activation via Fas pathway preceded cell death, which occurred a few days after Fas mediated activation. This program cell death was independent of caspase enzymatic activities as revealed by the lack of effect of ZVAD-fmk, a pan-caspase inhibitor. These results suggested that the Fas-FasL pathway, as part of the classical activation pathway of the macrophages, is essential in the stimulation of macrophage leading to a microbicidal state and to AICD, and may thus contribute to the pathogenesis of L. major infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Digital holographic microscopy (DHM) is a noninvasive optical imaging technique that provides quantitative phase images of living cells. In a recent study, we showed that the quantitative monitoring of the phase signal by DHM was a simple label-free method to study the effects of glutamate on neuronal optical responses (Pavillon et al., 2010). Here, we refine these observations and show that glutamate produces the following three distinct optical responses in mouse primary cortical neurons in culture, predominantly mediated by NMDA receptors: biphasic, reversible decrease (RD) and irreversible decrease (ID) responses. The shape and amplitude of the optical signal were not associated with a particular cellular phenotype but reflected the physiopathological status of neurons linked to the degree of NMDA activity. Thus, the biphasic, RD, and ID responses indicated, respectively, a low-level, a high-level, and an "excitotoxic" level of NMDA activation. Moreover, furosemide and bumetanide, two inhibitors of sodium-coupled and/or potassium-coupled chloride movement strongly modified the phase shift, suggesting an involvement of two neuronal cotransporters, NKCC1 (Na-K-Cl) and KCC2 (K-Cl) in the genesis of the optical signal. This observation is of particular interest since it shows that DHM is the first imaging technique able to monitor dynamically and in situ the activity of these cotransporters during physiological and/or pathological neuronal conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The regulation of the immune system is controlled by many cell surface receptors. A prominent representative is the 'molecular switch' HVEM (herpes virus entry mediator) that can activate either proinflammatory or inhibitory signaling pathways. HVEM ligands belong to two distinct families: the TNF-related cytokines LIGHT and lymphotoxin-α, and the Ig-related membrane proteins BTLA and CD160. HVEM and its ligands have been involved in the pathogenesis of various autoimmune and inflammatory diseases, but recent reports indicate that this network may also be involved in tumor progression and resistance to immune response. Here we summarize the recent advances made regarding the knowledge on HVEM and its ligands in cancer cells, and their potential roles in tumor progression and escape to immune responses. Blockade or enhancement of these pathways may help improving cancer therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel function of NF-kappaB in the development of most ectodermal appendages, including two types of murine pelage hair follicles, was detected in a mouse model with suppressed NF-kappaB activity (c(IkappaBalphaDeltaN)). However, the developmental processes regulated by NF-kappaB in hair follicles has remained unknown. Furthermore, the similarity between the phenotypes of c(IkappaBADeltaN) mice and mice deficient in Eda A1 (tabby) or its receptor EdaR (downless) raised the issue of whether in vivo NF-kappaB regulates or is regulated by these novel TNF family members. We now demonstrate that epidermal NF-kappaB activity is first observed in placodes of primary guard hair follicles at day E14.5, and that in vivo NF-kappaB signalling is activated downstream of Eda A1 and EdaR. Importantly, ectopic signals which activate NF-kappaB can also stimulate guard hair placode formation, suggesting a crucial role for NF-kappaB in placode development. In downless and c(IkappaBalphaDeltaN) mice, placodes start to develop, but rapidly abort in the absence of EdaR/NF-kappaB signalling. We show that NF-kappaB activation is essential for induction of Shh and cyclin D1 expression and subsequent placode down growth. However, cyclin D1 induction appears to be indirectly regulated by NF-kappaB, probably via Shh and Wnt. The strongly decreased number of hair follicles observed in c(IkappaBalphaDeltaN) mice compared with tabby mice, indicates that additional signals, such as TROY, must regulate NF-kappaB activity in specific hair follicle subtypes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Members of the tumor necrosis factor (TNF) family play key roles in the regulation of inflammation, immune responses and tissue homeostasis. Here we describe the identification of the chicken homologue of mammalian B cell activating factor of the TNF family (BAFF/BLyS). By searching a chicken EST database we identified two overlapping cDNA clones that code for the entire open reading frame of chicken BAFF (chBAFF), which contains a predicted transmembrane domain and a putative furin protease cleavage site like its mammalian counterparts. The amino acid identity between soluble chicken and human BAFF is 76%, considerably higher than for most other known cytokines. The chBAFF gene is most strongly expressed in the bursa of Fabricius. Soluble recombinant chBAFF produced by human 293T cells interacted with the mammalian cell-surface receptors TACI, BCMA and BAFF-R. It bound to chicken B cells, but not to other lymphocytes, and it promoted the survival of splenic chicken B cells in culture. Furthermore, bacterially expressed chBAFF induced the selective expansion of B cells in the spleen and cecal tonsils when administered to young chicks. Our results suggest that like its mammalian counterpart, chBAFF plays an important role in survival and/or proliferation of chicken B cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Catecholamines and alpha(1)-adrenergic receptors (alpha(1)-ARs) cause cardiac hypertrophy in cultured myocytes and transgenic mice, but heart size is normal in single KOs of the main alpha(1)-AR subtypes, alpha(1A/C) and alpha(1B). Here we tested whether alpha(1)-ARs are required for developmental cardiac hypertrophy by generating alpha(1A/C) and alpha(1B) double KO (ABKO) mice, which had no cardiac alpha(1)-AR binding. In male ABKO mice, heart growth after weaning was 40% less than in WT, and the smaller heart was due to smaller myocytes. Body and other organ weights were unchanged, indicating a specific effect on the heart. Blood pressure in ABKO mice was the same as in WT, showing that the smaller heart was not due to decreased load. Contractile function was normal by echocardiography in awake mice, but the smaller heart and a slower heart rate reduced cardiac output. alpha(1)-AR stimulation did not activate extracellular signal-regulated kinase (Erk) and downstream kinases in ABKO myocytes, and basal Erk activity was lower in the intact ABKO heart. In female ABKO mice, heart size was normal, even after ovariectomy. Male ABKO mice had reduced exercise capacity and increased mortality with pressure overload. Thus, alpha(1)-ARs in male mice are required for the physiological hypertrophy of normal postnatal cardiac development and for an adaptive response to cardiac stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily like the steroid, thyroid, or retinoid hormone receptors, which are ligand-activated transcription factors regulating gene expression. PPARs mediate the induction of the enzymes of the peroxisomal and microsomal fatty-acid oxidation pathways by hypolipidemic drugs such as clofibrate and are probably also involved in the gene expression of other lipid-metabolism-associated proteins that are controlled by fibrate hypolipidemic drugs. That PPARs play an important role in the regulation of lipid metabolism is reinforced by the discovery of their activation by physiologic concentrations of fatty acids. This observation raises the question of whether fatty acids are ligands of PPARs, which would imply that nutritional fatty acids can act like hormones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peroxisome proliferators regulate the transcription of genes by activating ligand-dependent transcription factors, which, due to their structure and function, can be assigned to the superfamily of nuclear hormone receptors. Three such peroxisome proliferator-activated receptors (PPAR alpha, beta, and gamma) have been cloned in Xenopus laevis. Their mRNAs are expressed differentially; xPPAR alpha and beta but not xPPAR gamma are expressed in oocytes and embryos. In the adult, expression of xPPAR alpha and beta appears to be ubiquitous, and xPPAR gamma is mainly observed in adipose tissue and kidney. Immunocytochemical analysis revealed that PPARs are nuclear proteins, and that their cytoplasmic-nuclear translocation is independent of exogenous activators. A target gene of PPARs is the gene encoding acyl-CoA oxidase (ACO), which catalyzes the rate-limiting step in the peroxisomal beta-oxidation of fatty acids. A peroxisome proliferator response element (PPRE), to which PPARs bind, has been identified within the promoter of the ACO gene. Besides the known xenobiotic activators of PPARs, such as hypolipidemic drugs, natural activators have been identified. Polyunsaturated fatty acids at physiological concentrations are efficient activators of PPARs, and 5,8,11,14-eicosatetraynoic acid (ETYA), which is the alkyne homolog of arachidonic acid, is the most potent activator of xPPAR alpha described to date. Taken together, our data suggest that PPARs have an important role in lipid metabolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Treatment of B cell lymphoma patients with MoAbs specific for the common B cell marker (CD20) has shown a good overall response rate, but the number of complete remissions is still very low. The use of MoAbs coupled to radioisotopes can improve the results, but induces undesirable myelodepression. As an alternative, we proposed to combine the specificity of MoAbs with the immunogenicity of T cell epitopes. We have previously shown that an anti-Ig lambda MoAb coupled to an MHC class II-restricted universal T cell epitope peptide P2 derived from tetanus toxin induces efficient lysis of a human B cell lymphoma by a specific CD4+ T cell line. Here we demonstrate that the antigen presentation properties of the MoAb peptide conjugate are maintained using a MoAb directed against a common B cell marker, CD19, which is known to be co-internalized with the B cell immunoglobulin receptor. In addition, we provide evidence that B cell lysis is mediated by the Fas apoptosis pathway, since Fas (CD95), but not tumour necrosis factor receptor (TNFr) or TNF-related receptors, is expressed by the target B cells, and FasL, but not perforin, is expressed by the effector T cells. These results show that B cell lymphomas can be 'foreignized' by MoAb-peptide P2 conjugates directed against the common B cell marker CD19 and eliminated by peptide P2-specific CD4+ T cells, via the ubiquitous Fas receptor. This approach, which bridges the specificity of passive antibody therapy with an active T cell immune response, may be complementary to and more efficient than the present therapy results with unconjugated chimeric anti-CD20 MoAbs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Regional administration of high doses of tumor necrosis factor (TNF) and interferon gamma (IFN gamma) to metastatic melanoma patients causes selective disruption of the tumor vasculature. This effect is paralleled by decreased endothelial cell proliferation and suppressed integrin alpha V beta 3-mediated adhesion in vitro. Overexpression of the cyclin-dependent kinase (cdk) inhibitory protein p16INK4a was reported to interfere with integrin alpha V beta 3-dependent melanoma cell adhesion. MATERIALS AND METHODS: TNF- and IFN gamma-treated HUVEC were analyzed for cell cycle progression and for protein expression by flow cytometry and Western blotting, respectively. p16INK4a was overexpressed by transient transfection, and HUVEC adhesion was tested in short-term adhesion assays. RESULTS: TNF and IFN gamma synergistically induced a G1 arrest associated with reduced levels of cyclin D1 and cdk2, and increased expression of the cdk inhibitors p16INK4a, p21WAF and p27Kip1. p16INK4a overexpression, however, had no effect on alpha V beta 3-mediated adhesion. CONCLUSION: These results implicate the down-regulation of cyclin D1 and cdk-2, and up-regulation of p16INK4a, p21WAF and p27Kip1 in the suppression of endothelial cell proliferation induced by TNF/IFN gamma and demonstrate that increased p16INK4a levels are not sufficient to suppress alpha V beta 3-mediated endothelial cell adhesion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have previously shown that the eye is a mineralocorticoid-sensitive organ and we now question the role of mineralocorticoid receptor (MR) in ocular inflammation. The endotoxin-induced uveitis (EIU), a rat model of human intraocular inflammation, was induced by systemic administration of lipopolysaccharide (LPS). Evaluations were made 6 and 24 hours after intraocular injection of aldosterone (simultaneous to LPS injection). Three hours after onset of EIU, the MR and the glucocorticoid metabolizing enzyme 11-beta hydroxysteroid dehydrogenase type 2 (11β-HSD2) expression were down-regulated in iris/ciliary body and the corticosterone concentration was increased in aqueous humor, altering the normal MR/glucocorticoid receptor (GR) balance. At 24 hours, the GR expression was also decreased. In EIU, aldosterone reduced the intensity of clinical inflammation in a dose-dependent manner. The clinical benefit of aldosterone was abrogated in the presence of the MR antagonist (RU26752) and only partially with the GR antagonist (RU38486). Aldosterone reduced the release of inflammatory mediators (6 and 24 hours: TNF-α, IFN-γ, MIP-1α) in aqueous humor and the number of activated microglia/macrophages. Aldosterone partly prevented the uveitis-induced MR down-regulation. These results suggest that MR expression and activation in iris/ciliary body could protect the ocular structures against damages induced by EIU.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutations in the epithelial morphogen ectodysplasin-A (EDA), a member of the tumor necrosis factor (TNF) family, are responsible for the human disorder X-linked hypohidrotic ectodermal dysplasia (XLHED) characterized by impaired development of hair, eccrine sweat glands, and teeth. EDA-A1 and EDA-A2 are two splice variants of EDA, which bind distinct EDA-A1 and X-linked EDA-A2 receptors. We identified a series of novel EDA mutations in families with XLHED, allowing the identification of the following three functionally important regions in EDA: a C-terminal TNF homology domain, a collagen domain, and a furin protease recognition sequence. Mutations in the TNF homology domain impair binding of both splice variants to their receptors. Mutations in the collagen domain can inhibit multimerization of the TNF homology region, whereas those in the consensus furin recognition sequence prevent proteolytic cleavage of EDA. Finally, a mutation affecting an intron splice donor site is predicted to eliminate specifically the EDA-A1 but not the EDA-A2 splice variant. Thus a proteolytically processed, oligomeric form of EDA-A1 is required in vivo for proper morphogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the nervous system, NMDA receptors (NMDARs) participate in neurotransmission and modulate the viability of neurons. In contrast, little is known about the role of NMDARs in pancreatic islets and the insulin-secreting beta cells whose functional impairment contributes to diabetes mellitus. Here we found that inhibition of NMDARs in mouse and human islets enhanced their glucose-stimulated insulin secretion (GSIS) and survival of islet cells. Further, NMDAR inhibition prolonged the amount of time that glucose-stimulated beta cells spent in a depolarized state with high cytosolic Ca(2+) concentrations. We also noticed that, in vivo, the NMDAR antagonist dextromethorphan (DXM) enhanced glucose tolerance in mice, and that in vitro dextrorphan, the main metabolite of DXM, amplified the stimulatory effect of exendin-4 on GSIS. In a mouse model of type 2 diabetes mellitus (T2DM), long-term treatment with DXM improved islet insulin content, islet cell mass and blood glucose control. Further, in a small clinical trial we found that individuals with T2DM treated with DXM showed enhanced serum insulin concentrations and glucose tolerance. Our data highlight the possibility that antagonists of NMDARs may provide a useful adjunct treatment for diabetes.