959 resultados para THIOREDOXIN-BINDING PROTEIN-2
Resumo:
The function of the extracytoplasmic AUXIN-BINDING-PROTEIN1 (ABP1) is largely enigmatic. We complemented a homozygous T-DNA insertion null mutant of ABP1 in Arabidopsis thaliana Wassilewskia with three mutated and one wild-type (wt) ABP1 cDNA, all tagged C-terminally with a strepII-FLAG tag upstream the KDEL signal. Based on in silico modelling, the abp1 mutants were predicted to have altered geometries of the auxin binding pocket and calculated auxin binding energies lower than the wt. Phenotypes linked to auxin transport were compromised in these three complemented abp1 mutants. Red light effects, such as elongation of hypocotyls in constant red (R) and far-red (FR) light, in white light supplemented by FR light simulating shade, and inhibition of gravitropism by R or FR, were all compromised in the complemented lines. Using auxin-or light-induced expression of marker genes, we showed that auxininduced expression was delayed already after 10 min, and light-induced expression within 60 min, even though TIR1/AFB or phyB are thought to act as receptors relevant for gene expression regulation. The expression of marker genes in seedlings responding to both auxin and shade showed that for both stimuli regulation of marker gene expression was altered after 10-20 min in the wild type and phyB mutant. The rapidity of expression responses provides a framework for the mechanics of functional interaction of ABP1 and phyB to trigger interwoven signalling pathways.
Resumo:
International audience
Resumo:
The expression of a gene from transcription of the DNA into pre-messenger RNA (pre-mRNA) over translation of messenger RNA (mRNA) into protein is constantly monitored for errors. This quality control is necessary to guarantee successful gene expression. One quality control mechanism important to this thesis is called nonsense-mediated mRNA decay (NMD). NMD is a cellular process that eliminates mRNA transcripts harboring premature translation termination codons (PTCs). Furthermore, NMD is known to regulate certain transcripts with long 3′ UTRs. However, some mRNA transcripts are known to evade NMD. The mechanism of NMD activation has been subjected to many studies whereas NMD evasion or suppression still remains rather elusive. It has previously been shown that the cytoplasmic poly(A)-binding protein (PABPC1) is able to suppress NMD of certain transcripts. In this study I show that PABPC1 is able to suppress NMD of a long 3′ UTR-carrying reporter when tethered immediately downstream of the termination codon. I further am able to show the importance of the interaction between PABPC1 and eIF4G for NMD suppression, whereas the interaction between PABPC1 and eRF3a seems dispensable. These results indicate an involvement of efficient translation termination and potentially ribosome recycling in NMD suppression. I am able to show that if PABPC1 is too far removed from the terminating ribosome NMD is activated. After showing the importance of PABPC1 recruitment directly downstream of a terminating ribosome in NMD suppression, I am further able to demonstrate several different methods by which PABPC1 can be recruited. Fold-back of the poly(A)-tail mediated by two interacting proteins on opposite ends of a 3′ UTR manages to bring PABPC1 bound to the poly(A)-tail into close proximity of the terminating ribosome and therefore suppress NMD. Furthermore, small PAM2 peptides that are known to interact with the MLLE domain of PABPC1 are able to strongly suppress NMD initiated by either a long 3′ UTR or an EJC. I am also able to show the NMD antagonizing power of recruited PABPC1 for the known endogenous NMD target β-globin PTC39, which is responsible for the disease β-thalassemia. This shows the potential medical implications and application of suppressing NMD by recruiting PABPC1 into close proximity of a terminating ribosome.
Resumo:
RESUMO: Os Staphylococcus aureus resistentes à meticilina (MRSA, do inglês “methicillin-resistant Staphylococcus aureus”) são um dos principais agentes responsáveis por infeções hospitalares. Os MRSA são resistentes a praticamente todos os antibióticos β-lactâmicos devido a dois mecanismos principais: produção de β-lactamase (bla), codificada pelo gene blaZ, e produção de uma proteína de ligação à penicilina (PBP2a, do inglês “penicillin binding protein 2”), codificada pelo gene mecA. Estes dois genes são regulados por sistemas homólogos, constituídos por um sensor-transdutor (BlaR1 e MecR1) e um repressor (BlaI e MecI), de tal modo que ambos os sistemas são capazes de co-regular os genes mecA e blaZ, embora com eficiências de indução muito diferentes. De facto, a indução mediada pelo sistema mecI-mecR1 é tão lenta que se acredita que este sistema não está funcional na maioria das estirpes MRSA. No entanto, dados recentes do nosso laboratório, demonstram a ausência de relação entre a presença do gene mecI e o nível de resistência à meticilina em estirpes MRSA epidémicas, e também que, o fenótipo de resistência da grande maioria das estirpes não é perturbado pela sobre-expressão em trans do repressor mecI. Curiosamente, as duas estirpes em que a expressão da resistência foi afetada pela sobre-expressão do mecI são negativas para o locus da β-lactamase, o que sugere que este locus pode interferir diretamente com a repressão do gene mecA mediada pelo MecI. Nesta tese de mestrado esta hipótese foi explorada usando estratégias de biologia molecular e ensaios fenotípicos da resistência aos -lactâmicos. Os resultados obtidos demonstram que a presença do plasmídeo nativo da β-lactamase não só anula a repressão mediada pelo MecI, como também aumenta o nível de resistência das estirpes parentais. Várias hipóteses foram então formuladas para explicar estas observações. Dados preliminares, em conjunto com evidências experimentais publicadas, sugerem que o BlaI forma hetero-dímeros com o MecI que, após a indução, são inativados eficientemente pelo BlaR1. Em conclusão, estes resultados apresentam novas perspetivas para o mecanismo de regulação do mecA e para uma nova importante função do operão da β-lactamase para o fenótipo das estirpes MRSA.-------------------ABSTRACT: Methicillin-resistant Staphylococcus aureus (MRSA) is an important nosocomial pathogen and is also emerging in the community. MRSA is cross-resistant to virtually all β-lactam antibiotics and has acquired two main resistance mechanisms: production of β-lactamase (bla), coded by blaZ, and production of penicillin binding protein 2a (PBP2a), coded by mecA. Both genes are regulated by homologous sensor-transducers (BlaR1 and MecR1) and repressors (BlaI and MecI), and coregulation of mecA and blaZ by both systems has been demonstrated, although with remarkable different efficiencies. In fact, induction of mecA by mecI-mecR1 is so slow that it is believed it is not functional in most MRSA strains. However, recent data from our laboratory has unexpectedly demonstrated that not only there is no correlation between the presence of mecI gene and the resistance level in epidemic MRSA strains, but also that for most strains there were no significant changes on the resistance phenotype upon the mecI overexpression in trans. Interestingly, the two strains in which mecI overexpression affected the resistance expression were negative for the bla locus, suggesting that this locus may interfere directly with the MecI-mediated repression of mecA and account for those puzzling observations. In this master thesis we have explored this hypothesis using molecular biology strategies and phenotypic analysis of -lactam resistance. The data obtained demonstrate that the presence of a wild-type plasmid containing the bla locus not only disrupts the MecImediated repression, but also significantly enhances the expression of resistance. Several preliminary hypotheses were formulated to explain these observations and preliminary data, together with published evidence, support the working model that BlaI forms functional hetero-dimers with MecI, which upon induction are readily inactivated by BlaR1. These results provide new insights into the regulatory mechanism(s) of mecA and open new perspectives for the role of β-lactamase operon in the MRSA phenotype.
Resumo:
Background: The diagnosis of Rett syndrome (RTT) is based on a set of clinical criteria, irrespective of mutation status. The aims of this study were (1) to define the clinical differences existing between patients with Rett syndrome with (Group I) and without a MECP2 mutation (Group II), and (2) to characterize the phenotypes associated with the more common MECP2 mutations. Patients and Methods: We analyzed 87 patients fulfilling the clinical criteria for RTT. All were observed and videotaped by the same paediatric neurologist. Seven common mutations were considered separately, and associated clinical features analysed. Results: Comparing Group I and II, we found differences concerning psychomotor development prior to onset, acquisition of propositive manipulation and language, and evolving autistic traits. Based on age at observation, we found differences in eye pointing, microcephaly, growth, number of stereotypies, rigidity, ataxia and ataxic-rigid gait, and severity score. Patients with truncating differed from those with missense mutations regarding acquisition of propositive words and independent gait, before the beginning of the disease, and microcephaly, growth, foot length, dystonia, rigidity and severity score, at the time of observation. Patients with the R168X mutation had a more severe phenotype, whereas those with R133C showed a less severe one. Patients with R294X had a hyperactive behaviour, and those with T158M seemed to be particularly ataxic and rigid. Conclusion: A clear regressive period (with loss of prehension and language, deceleration of growth) and the presence of more than three different stereotypies, rigidity and ataxic-rigid gait seemed to be very helpful in differentiating Group I from Group II.
Resumo:
Background: Rett disorder (RD) is a progressive neurodevelopmental entity caused by mutations in the MECP2 gene. It has been postulated that there are alterations in the levels of certain neurotransmitters and folate in the pathogenesis of this disease. Here we re-evaluated this hypothesis. Patients and Methods: We evaluated CSF folate, biogenic amines and pterines in 25 RD patients. Treatment with oral folinic acid was started in those cases with low folate. Patients were clinically evaluated and videotaped up to 6 months after therapy. Results: CSF folate was below the reference values in 32% of the patients. Six months after treatment no clinical improvement was observed. Three of the four patients with the R294X mutation had increased levels of a dopamine metabolite associated to a particular phenotype. Three patients had low levels of a serotonin metabolite. Two of them were treated with fluoxetine and one showed clinical improvement. No association was observed between CSF folate and these metabolites, after adjusting for the patients age and neopterin levels. Conclusion: Our results support that folinic acid supplementation has no significant effects on the course of the disease. We report discrete and novel neurotransmitter abnormalities that may contribute to the pathogenesis of RD highlighting the need for further studies on CSF neurotransmitters in clinically and genetically well characterized patients.
Resumo:
In this work we explored the role of the 3'UTR of the MECP2 gene in patients with clinical diagnosis of RTT and mental retardation; focusing on regions of the 3'UTR with almost 100% conservation at the nucleotide level among mouse and human. By mutation scanning (DOVAM-S technique) the MECP2 3'UTR of a total of 66 affected females were studied. Five3'UTR variants in the MECP2 were found (c.1461+9G>A, c.1461+98insA, c.2595G>A, c.9961C>G and c.9964delC) in our group of patients. None of the variants found is located in putative protein-binding sites nor predicted to have a pathogenic role. Our data suggest that mutations in this region do not account for a large proportion of the RTT cases without a genetic explanation.
Resumo:
Rett syndrome is a genetic neurodevelopmental disorder that affects mainly girls, but mutations in the causative MECP2 gene have also been identified in boys with classic Rett syndrome and Rett syndrome-like phenotypes. We have studied a group of 28 boys with a neurodevelopmental disorder, 13 of which with a Rett syndrome-like phenotype; the patients had diverse clinical presentations that included perturbations of the autistic spectrum, microcephaly, mental retardation, manual stereotypies, and epilepsy. We analyzed the complete coding region of the MECP2 gene, including the detection of large rearrangements, and we did not detect any pathogenic mutations in the MECP2 gene in these patients, in whom the genetic basis of disease remained unidentified. Thus, additional genes should be screened in this group of patients.
Resumo:
Few studies have tried to characterize the efficacy of parenteral support of critically ill infants during short period of intensive care. We studied seventeen infants during five days of total parenteral hyperalimentation. Subsequently, according to the clinical conditions, the patients received nutritional support by parenteral, enteral route or both up to the 10th day. Evaluations were performed on the 1st, 5th, and 10th days. These included: clinical data (food intake and anthropometric measurements), haematological data (lymphocyte count), biochemical tests (albumin, transferrin, fibronectin, prealbumin, retinol-binding protein) and hormone assays (cortisol, insulin, glucagon). Anthropometric measurements revealed no significant difference between the first and second evaluations. Serum albumin and transferrin did not change significantly, but mean values of fibronectin (8.9 to 16 mg/dL), prealbumin (7.7 to 18 mg/dL), and retinol-binding protein (2.4 to 3.7 mg/dL) increased significantly (p < 0.05) from the 1st to the 10th day. The hormonal study showed no difference for insulin, glucagon, and cortisol when the three evaluations were compared. The mean value of the glucose/insulin ratio was of 25.7 in the 1st day and 15.5 in the 5th day, revealing a transitory supression of this hormone. Cortisol showed values above normal in the beginning of the study. We conclude that the anthropometric parameters were not useful due to the short time of the study; serum proteins, fibronectin, prealbumin, and retinol-binding protein were very sensitive indicators of nutritional status, and an elevated glucose/insulin ratio, associated with a slight tendency for increased cortisol levels suggest hypercatabolic state. The critically ill patient can benefit from an early metabolic support.
Resumo:
The study of transcription using genomic tiling arrays has lead to the identification of numerous additional exons. One example is the MECP2 gene on the X chromosome; using 5'RACE and RT-PCR in human tissues and cell lines, we have found more than 70 novel exons (RACEfrags) connecting to at least one annotated exon.. We sequenced all MECP2-connected exons and flanking sequences in 3 groups: 46 patients with the Rett syndrome and without mutations in the currently annotated exons of the MECP2 and CDKL5 genes; 32 patients with the Rett syndrome and identified mutations in the MECP2 gene; 100 control individuals from the same geoethnic group. Approximately 13 kb were sequenced per sample, (2.4 Mb of DNA resequencing). A total of 75 individuals had novel rare variants (mostly private variants) but no statistically significant difference was found among the 3 groups. These results suggest that variants in the newly discovered exons may not contribute to Rett syndrome. Interestingly however, there are about twice more variants in the novel exons than in the flanking sequences (44 vs. 21 for approximately 1.3 Mb sequenced for each class of sequences, p=0.0025). Thus the evolutionary forces that shape these novel exons may be different than those of neighboring sequences.
Resumo:
The development of targeted treatment strategies adapted to individual patients requires identification of the different tumor classes according to their biology and prognosis. We focus here on the molecular aspects underlying these differences, in terms of sets of genes that control pathogenesis of the different subtypes of astrocytic glioma. By performing cDNA-array analysis of 53 patient biopsies, comprising low-grade astrocytoma, secondary glioblastoma (respective recurrent high-grade tumors), and newly diagnosed primary glioblastoma, we demonstrate that human gliomas can be differentiated according to their gene expression. We found that low-grade astrocytoma have the most specific and similar expression profiles, whereas primary glioblastoma exhibit much larger variation between tumors. Secondary glioblastoma display features of both other groups. We identified several sets of genes with relatively highly correlated expression within groups that: (a). can be associated with specific biological functions; and (b). effectively differentiate tumor class. One prominent gene cluster discriminating primary versus nonprimary glioblastoma comprises mostly genes involved in angiogenesis, including VEGF fms-related tyrosine kinase 1 but also IGFBP2, that has not yet been directly linked to angiogenesis. In situ hybridization demonstrating coexpression of IGFBP2 and VEGF in pseudopalisading cells surrounding tumor necrosis provided further evidence for a possible involvement of IGFBP2 in angiogenesis. The separating groups of genes were found by the unsupervised coupled two-way clustering method, and their classification power was validated by a supervised construction of a nearly perfect glioma classifier.
Resumo:
Growth of numerous cancer types is believed to be driven by a subpopulation of poorly differentiated cells, often referred to as cancer stem cells (CSCs), that have the capacity for self-renewal, tumor initiation, and generation of nontumorigenic progeny. Despite their potentially key role in tumor establishment and maintenance, the energy requirements of these cells and the mechanisms that regulate their energy production are unknown. Here, we show that the oncofetal insulin-like growth factor 2 mRNA-binding protein 2 (IMP2, IGF2BP2) regulates oxidative phosphorylation (OXPHOS) in primary glioblastoma (GBM) sphere cultures (gliomaspheres), an established in vitro model for CSC expansion. We demonstrate that IMP2 binds several mRNAs that encode mitochondrial respiratory chain complex subunits and that it interacts with complex I (NADH:ubiquinone oxidoreductase) proteins. Depletion of IMP2 in gliomaspheres decreases their oxygen consumption rate and both complex I and complex IV activity that results in impaired clonogenicity in vitro and tumorigenicity in vivo. Importantly, inhibition of OXPHOS but not of glycolysis abolishes GBM cell clonogenicity. Our observations suggest that gliomaspheres depend on OXPHOS for their energy production and survival and that IMP2 expression provides a key mechanism to ensure OXPHOS maintenance by delivering respiratory chain subunit-encoding mRNAs to mitochondria and contributing to complex I and complex IV assembly.
Resumo:
Adiponectin serum concentrations are an important biomarker in cardiovascular epidemiology with heritability etimates of 30-70%. However, known genetic variants in the adiponectin gene locus (ADIPOQ) account for only 2%-8% of its variance. As transcription factors are thought to play an under-acknowledged role in carrying functional variants, we hypothesized that genetic polymorphisms in genes coding for the main transcription factors for the ADIPOQ promoter influence adiponectin levels. Single nucleotide polymorphisms (SNPs) at these genes were selected based on the haplotype block structure and previously published evidence to be associated with adiponectin levels. We performed association analyses of the 24 selected SNPs at forkhead box O1 (FOXO1), sterol-regulatory-element-binding transcription factor 1 (SREBF1), sirtuin 1 (SIRT1), peroxisome-proliferator-activated receptor gamma (PPARG) and transcription factor activating enhancer binding protein 2 beta (TFAP2B) gene loci with adiponectin levels in three different European cohorts: SAPHIR (n = 1742), KORA F3 (n = 1636) and CoLaus (n = 5355). In each study population, the association of SNPs with adiponectin levels on log-scale was tested using linear regression adjusted for age, sex and body mass index, applying both an additive and a recessive genetic model. A pooled effect size was obtained by meta-analysis assuming a fixed effects model. We applied a significance threshold of 0.0033 accounting for the multiple testing situation. A significant association was only found for variants within SREBF1 applying an additive genetic model (smallest p-value for rs1889018 on log(adiponectin) = 0.002, β on original scale = -0.217 µg/ml), explaining ∼0.4% of variation of adiponectin levels. Recessive genetic models or haplotype analyses of the FOXO1, SREBF1, SIRT1, TFAPB2B genes or sex-stratified analyses did not reveal additional information on the regulation of adiponectin levels. The role of genetic variations at the SREBF1 gene in regulating adiponectin needs further investigation by functional studies.
Resumo:
Horizontal gene transfer between commensal and pathogenic Neisseriae is the mechanism proposed to explain how pathogenic species acquire altered portions of the penA gene, which encodes penicillin binding protein 2. These changes resulted in a moderately penicillin-resistant phenotype in the meningococci, whose frequency of isolation in Spain increased at the end of the 1980s. Little has been published about the possibility of this gene transfer in nature or about its simulation in the laboratory. We designed a simple microcosm, formed by solid and liquid media, that partially mimics the upper human respiratory tract. In this microcosm, penicillin-resistant commensal strains and the fully susceptible meningococcus were co-cultivated. The efficiency of gene transfer between the strains depended on the phase of bacterial growth and the conditions of culture. Resistance of penicillin was acquired in different steps irrespective of the source of the DNA. The presence of DNase in the medium had no effect on gene transfer, but it was near zero when nicked DNA was used. Cell-to-cell contact or membrane blebs could explain these results. The analysis of sequences of the transpeptidase domain of PBP2 from transformants, and from donor and recipient strains demonstrated that the emergence of moderately resistant transformants was due to genetic exchange between the co-cultivated strains. Finally, mechanisms other than penA modification could be invoked to explain decreased susceptibility