894 resultados para TEFL devices
Resumo:
This paper introduces an extended hierarchical task analysis (HTA) methodology devised to evaluate and compare user interfaces on volumetric infusion pumps. The pumps were studied along the dimensions of overall usability and propensity for generating human error. With HTA as our framework, we analyzed six pumps on a variety of common tasks using Norman’s Action theory. The introduced method of evaluation divides the problem space between the external world of the device interface and the user’s internal cognitive world, allowing for predictions of potential user errors at the human-device level. In this paper, one detailed analysis is provided as an example, comparing two different pumps on two separate tasks. The results demonstrate the inherent variation, often the cause of usage errors, found with infusion pumps being used in hospitals today. The reported methodology is a useful tool for evaluating human performance and predicting potential user errors with infusion pumps and other simple medical devices.
Resumo:
Ventricular assist devices (VADs) are blood pumps that offer an option to support the circulation of patients with severe heart failure. Since a failing heart has a remaining pump function, its interaction with the VAD influences the hemodynamics. Ideally, the heart's action is taken into account for actuating the device such that the device is synchronized to the natural cardiac cycle. To realize this in practice, a reliable real-time algorithm for the automatic synchronization of the VAD to the heart rate is required. This paper defines the tasks such an algorithm needs to fulfill: the automatic detection of irregular heart beats and the feedback control of the phase shift between the systolic phases of the heart and the assist device. We demonstrate a possible solution to these problems and analyze its performance in two steps. First, the algorithm is tested using the MIT-BIH arrhythmia database. Second, the algorithm is implemented in a controller for a pulsatile and a continuous-flow VAD. These devices are connected to a hybrid mock circulation where three test scenarios are evaluated. The proposed algorithm ensures a reliable synchronization of the VAD to the heart cycle, while being insensitive to irregularities in the heart rate.
Devices in heart failure: potential methods for device-based monitoring of congestive heart failure.
Resumo:
Congestive heart failure has long been one of the most serious medical conditions in the United States; in fact, in the United States alone, heart failure accounts for 6.5 million days of hospitalization each year. One important goal of heart-failure therapy is to inhibit the progression of congestive heart failure through pharmacologic and device-based therapies. Therefore, there have been efforts to develop device-based therapies aimed at improving cardiac reserve and optimizing pump function to meet metabolic requirements. The course of congestive heart failure is often worsened by other conditions, including new-onset arrhythmias, ischemia and infarction, valvulopathy, decompensation, end-organ damage, and therapeutic refractoriness, that have an impact on outcomes. The onset of such conditions is sometimes heralded by subtle pathophysiologic changes, and the timely identification of these changes may promote the use of preventive measures. Consequently, device-based methods could in the future have an important role in the timely identification of the subtle pathophysiologic changes associated with congestive heart failure.
Resumo:
Due to the clinical success of left ventricular assist devices (LVADs) used for short term "bridge to transplant" and the limited availability of donor organs, heart assist devices are being considered for long term implantation as an alternative to heart transplantation. In an effort to improve biocompatibility, a nonthrombogenic cellular lining was developed from genetically engineered smooth muscle cells (GE-SMC) for the Thermocardiosystems Heartmate$\sp{\rm TM}$ LVAD. SMCs have been transduced with the genes for endothelial nitric oxide synthase (NOS III) and GTP cyclohydrolase (GTPCH) with subsequent stable expression of the NOS III protein via an Epstein Barr based DNA expression vector. Transduced SMCs produce nitric oxide at concentrations that reduce platelet deposition and smooth muscle cell proliferation when tested in vitro. In addition, the adhesive capabilities of GE-SMC linings were also examined, and optimized in physical environments mimicking typical in vivo LVAD operation. Preliminary investigations examining cell adhesion during constant shear stress exposure demonstrated an acute phase of cell loss corresponding to cytoskeletal F-actin rearrangement. Subsequently, an in vitro circulatory loop was designed to expose cell lined LVADs to in vivo operating conditions. Cumulative cell loss from cell lined LVADs was less than 10% after 24 hours of flow. Using a protocol for "preconditioning" the cell lining within the mock circulatory loop, the first implantation of an LVAD containing a genetically engineered SMC lining was successfully implemented in a bovine model. Results from this 24 hour study indicate that the flow-conditioned cellular lining remained intact with no evidence of thromboembolization and only minimal changes in coagulation studies. ^
Resumo:
About 500,000 elderly people in Switzerland suffer a fall each year. Thus medical attention and help are essential for these people, who mostly live alone without a caregiver. Only 3% of people aged over 65 in Switzerland use an emergency system. Personal telehealth devices allow patients to receive enough information about the appropriate treatment, as well as followup with their doctors and reports of any emergency, in the absence of any caregiver. This increases their quality of life in a cost-effective fashion. "Limmex"-a new medical emergency watch-was launched in Switzerland in 2011 and has been a great commercial success. In this paper, we give a brief review of this watch technology, along with the results of a survey of 620 users conducted by the Department of Emergency Medicine in Bern.
Resumo:
OBJECTIVE: Acupuncture is a complex intervention consisting of specific and non-specific components. Acupuncture studies more frequently focus on collecting data from the patients’ perspective and response, but the acupuncturist’s role remains relatively unclear. In order to investigate potential non-mechanical active factors originating from the acupuncturist and transmitted to the patient during treatment, two novel devices for basic research in acupuncture were designed. The Acuplicator allows the researcher to insert needles without touching the needles themselves, while the Veliusator locks the needle in its place so that no mechanical movement can be transferred. METHODS: The Acuplicator was used to insert needles at Neiguan (PC6) on the right forearm of 23 volunteers. The insertion depth was measured using a depth gauge. The transfer of mechanical movements from the handle to the tip was detected with a precision length gauge with a motoric-tactile sensor. RESULTS: The mean insertion depth was (12.3 ± 1.5) mm (range 9.5 to 15.0 mm). Even with intense manipulation of the needle handle, no movements within ± 1 μm could be detected at the tip when the needle was locked. CONCLUSION: With these two devices it will be possible to investigate the influence of non-mechanical components such as therapeutic qi in acupuncture.
Resumo:
Abstract. During the last decade mobile communications increasingly became part of people's daily routine. Such usage raises new challenges regarding devices' battery lifetime management when using most popular wireless access technologies, such as IEEE 802.11. This paper investigates the energy/delay trade-off of using an end-user driven power saving approach, when compared with the standard IEEE 802.11 power saving algorithms. The assessment was conducted in a real testbed using an Android mobile phone and high-precision energy measurement hardware. The results show clear energy benefits of employing user-driven power saving techniques, when compared with other standard approaches.
Resumo:
Equipped with state-of-the-art smartphones and mobile devices, today's highly interconnected urban population is increasingly dependent on these gadgets to organize and plan their daily lives. These applications often rely on current (or preferred) locations of individual users or a group of users to provide the desired service, which jeopardizes their privacy; users do not necessarily want to reveal their current (or preferred) locations to the service provider or to other, possibly untrusted, users. In this paper, we propose privacy-preserving algorithms for determining an optimal meeting location for a group of users. We perform a thorough privacy evaluation by formally quantifying privacy-loss of the proposed approaches. In order to study the performance of our algorithms in a real deployment, we implement and test their execution efficiency on Nokia smartphones. By means of a targeted user-study, we attempt to get an insight into the privacy-awareness of users in location-based services and the usability of the proposed solutions.
Resumo:
Aims: To compare clinical outcome of Amplatzer PFO (APFO) to Cardia PFO (CPFO) occluder. Percutaneous patent foramen ovale (PFO) closure prevents stroke recurrence in stroke due to paradoxical embolism. Methods and results: The primary endpoint was a composite of stroke, TIA, or peripheral embolism at follow-up. The secondary endpoint was residual shunt. Outcome was compared among 934 (APFO: 712; CPFO: 222) patients, and in 297 propensity score-matched patients. The primary endpoint occurred in 29 patients (0.71/100 patient-years): four (2%) with the CPFO (0.31/100 patient-years), and 25 (4%) with the APFO (0.89/100 patient-years) (p=0.20). Residual shunt at six months was more frequent with the CPFO (31% versus 9%, p<0.001). No differences in residual shunts were seen at the last available echocardiographic follow-up (9±18 months): APFO 11%, CPFO 14%, p=0.22. Conclusions: This study suggests that PFO closure with APFO or CPFO is equally effective for the prevention of recurrent events. Residual shunt was more frequent at six months with CPFO, but was similar to APFO at later follow-up.
Resumo:
Upconverter materials and upconverter solar devices were recently investigated with broad-band excitation revealing the great potential of upconversion to enhance the efficiency of solar cell at comparatively low solar concentration factors. In this work first attempts are made to simulate the behavior of the upconverter β-NaYF4 doped with Er3+ under broad-band excitation. An existing model was adapted to account for the lower absorption of broader excitation spectra. While the same trends as observed for the experiments were found in the simulation, the absolute values are fairly different. This makes an upconversion model that specifically considers the line shape function of the ground state absorption indispensable to achieve accurate simulations of upconverter materials and upconverter solar cell devices with broadband excitations, such as the solar radiation.